Abstract:In recent years, the technology in visual-inertial odometry (VIO) has matured considerably and has been widely used in many applications. However, we still encounter challenges when applying VIO to a micro air vehicle (MAV) equipped with a downward-looking camera. Specifically, VIO cannot compute the correct initialization results during take-off and the cumulative drift is large when the MAV is flying in the air. To overcome these problems, we propose a homographybased initialization method, which utilizes the fact that the features detected by the downward-looking camera during take-off are approximately on the same plane. Then we introduce the prior normal vector and motion field to make states more accurate. In addition, to deal with the cumulative drift, a strategy for dynamically weighting visual residuals is proposed. Finally, we evaluate our method on the collected real-world datasets. The results demonstrate that our system can be successfully initialized no matter how the MAV takes off and the positioning errors are also greatly improved.
Abstract:Deep learning-based medical image segmentation technology aims at automatic recognizing and annotating objects on the medical image. Non-local attention and feature learning by multi-scale methods are widely used to model network, which drives progress in medical image segmentation. However, those attention mechanism methods have weakly non-local receptive fields' strengthened connection for small objects in medical images. Then, the features of important small objects in abstract or coarse feature maps may be deserted, which leads to unsatisfactory performance. Moreover, the existing multi-scale methods only simply focus on different sizes of view, whose sparse multi-scale features collected are not abundant enough for small objects segmentation. In this work, a multi-dimensional attention segmentation model with cascade multi-scale convolution is proposed to predict accurate segmentation for small objects in medical images. As the weight function, multi-dimensional attention modules provide coefficient modification for significant/informative small objects features. Furthermore, The cascade multi-scale convolution modules in each skip-connection path are exploited to capture multi-scale features in different semantic depth. The proposed method is evaluated on three datasets: KiTS19, Pancreas CT of Decathlon-10, and MICCAI 2018 LiTS Challenge, demonstrating better segmentation performances than the state-of-the-art baselines.
Abstract:Because the expansion path of U-Net may ignore the characteristics of small targets, intermediate supervision mechanism is proposed. The original mask is also entered into the network as a label for intermediate output. However, U-Net is mainly engaged in segmentation, and the extracted features are also targeted at segmentation location information, and the input and output are different. The label we need is that the input and output are both original masks, which is more similar to the refactoring process, so we propose another intermediate supervision mechanism. However, the features extracted by the contraction path of this intermediate monitoring mechanism are not necessarily consistent. For example, U-Net's contraction path extracts transverse features, while auto-encoder extracts longitudinal features, which may cause the output of the expansion path to be inconsistent with the label. Therefore, we put forward the intermediate supervision mechanism of shared-weight decoder module. Although the intermediate supervision mechanism improves the segmentation accuracy, the training time is too long due to the extra input and multiple loss functions. For one of these problems, we have introduced tied-weight decoder. To reduce the redundancy of the model, we combine shared-weight decoder module with tied-weight decoder module.
Abstract:Computer-Aided Diagnosis and Treatment of Tumors is a hot topic of deep learning in recent years, which constitutes a series of medical tasks, such as detection of tumor markers, the outline of tumor leisures, subtypes and stages of tumors, prediction of therapeutic effect, and drug development. Meanwhile, there are some deep learning models with precise positioning and excellent performance produced in mainstream task scenarios. Thus follow to introduce deep learning methods from task-orient, mainly focus on the improvements for medical tasks. Then to summarize the recent progress in four stages of tumor diagnosis and treatment, which named In-Vitro Diagnosis (IVD), Imaging Diagnosis (ID), Pathological Diagnosis (PD), and Treatment Planning (TP). According to the specific data types and medical tasks of each stage, we present the applications of deep learning in the Computer-Aided Diagnosis and Treatment of Tumors and analyzing the excellent works therein. This survey concludes by discussing research issues and suggesting challenges for future improvement.