Abstract:Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce $\textit{weak-to-strong search}$, framing the alignment of a large language model as a test-time greedy search to maximize the log-likelihood difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (i) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (ii) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance. Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned $\texttt{gpt2}$s to effectively improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small model pairs (e.g., $\texttt{zephyr-7b-beta}$ and its untuned version) can significantly improve the length-controlled win rates of both white-box and black-box large models against $\texttt{gpt-4-turbo}$ (e.g., $34.4 \rightarrow 37.9$ for $\texttt{Llama-3-70B-Instruct}$ and $16.0 \rightarrow 20.1$ for $\texttt{gpt-3.5-turbo-instruct}$), despite the small models' low win rates $\approx 10.0$.
Abstract:Large language models (LLMs) need to undergo safety alignment to ensure safe conversations with humans. However, in this work, we introduce an inference-time attack framework, demonstrating that safety alignment can also unintentionally facilitate harmful outcomes under adversarial manipulation. This framework, named Emulated Disalignment (ED), adversely combines a pair of open-source pre-trained and safety-aligned language models in the output space to produce a harmful language model without additional training. Our experiments with ED across three datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rate in 43 out of 48 evaluation subsets by a large margin. Crucially, our findings highlight the importance of reevaluating the practice of open-sourcing language models even after safety alignment.
Abstract:Large Language Models (LLMs) are now commonplace in conversation applications. However, their risks of misuse for generating harmful responses have raised serious societal concerns and spurred recent research on LLM conversation safety. Therefore, in this survey, we provide a comprehensive overview of recent studies, covering three critical aspects of LLM conversation safety: attacks, defenses, and evaluations. Our goal is to provide a structured summary that enhances understanding of LLM conversation safety and encourages further investigation into this important subject. For easy reference, we have categorized all the studies mentioned in this survey according to our taxonomy, available at: https://github.com/niconi19/LLM-conversation-safety.