Abstract:Generative image reconstruction algorithms such as measurement conditioned diffusion models are increasingly popular in the field of medical imaging. These powerful models can transform low signal-to-noise ratio (SNR) inputs into outputs with the appearance of high SNR. However, the outputs can have a new type of error called hallucinations. In medical imaging, these hallucinations may not be obvious to a Radiologist but could cause diagnostic errors. Generally, hallucination refers to error in estimation of object structure caused by a machine learning model, but there is no widely accepted method to evaluate hallucination magnitude. In this work, we propose a new image quality metric called the hallucination index. Our approach is to compute the Hellinger distance from the distribution of reconstructed images to a zero hallucination reference distribution. To evaluate our approach, we conducted a numerical experiment with electron microscopy images, simulated noisy measurements, and applied diffusion based reconstructions. We sampled the measurements and the generative reconstructions repeatedly to compute the sample mean and covariance. For the zero hallucination reference, we used the forward diffusion process applied to ground truth. Our results show that higher measurement SNR leads to lower hallucination index for the same apparent image quality. We also evaluated the impact of early stopping in the reverse diffusion process and found that more modest denoising strengths can reduce hallucination. We believe this metric could be useful for evaluation of generative image reconstructions or as a warning label to inform radiologists about the degree of hallucinations in medical images.
Abstract:Accurate 2D+T myocardium segmentation in cine cardiac magnetic resonance (CMR) scans is essential to analyze LV motion throughout the cardiac cycle comprehensively. The Segment Anything Model (SAM), known for its accurate segmentation and zero-shot generalization, has not yet been tailored for CMR 2D+T segmentation. We therefore introduce CMR2D+T-SAM, a novel approach to adapt SAM for CMR 2D+T segmentation using spatio-temporal adaption. This approach also incorporates a U-Net framework for multi-scale feature extraction, as well as text prompts for accurate segmentation on both short-axis (SAX) and long-axis (LAX) views using a single model. CMR2D+T-SAM outperforms existing deep learning methods on the STACOM2011 dataset, achieving a myocardium Dice score of 0.885 and a Hausdorff distance (HD) of 2.900 pixels. It also demonstrates superior zero-shot generalization on the ACDC dataset with a Dice score of 0.840 and a HD of 4.076 pixels.
Abstract:Conditional diffusion models have gained recognition for their effectiveness in image restoration tasks, yet their iterative denoising process, starting from Gaussian noise, often leads to slow inference speeds. As a promising alternative, the Image-to-Image Schr\"odinger Bridge (I2SB) initializes the generative process from corrupted images and integrates training techniques from conditional diffusion models. In this study, we extended the I2SB method by introducing the Implicit Image-to-Image Schrodinger Bridge (I3SB), transitioning its generative process to a non-Markovian process by incorporating corrupted images in each generative step. This enhancement empowers I3SB to generate images with better texture restoration using a small number of generative steps. The proposed method was validated on CT super-resolution and denoising tasks and outperformed existing methods, including the conditional denoising diffusion probabilistic model (cDDPM) and I2SB, in both visual quality and quantitative metrics. These findings underscore the potential of I3SB in improving medical image restoration by providing fast and accurate generative modeling.