Abstract:The Object Goal Navigation (ObjectNav) task requires the agent to navigate to a specified target in an unseen environment. Since the environment layout is unknown, the agent needs to perform semantic reasoning to infer the potential location of the target, based on its accumulated memory of the environment during the navigation process. Diffusion models have been shown to be able to learn the distribution relationships between features in RGB images, and thus generate new realistic images.In this work, we propose a new approach to solving the ObjectNav task, by training a diffusion model to learn the statistical distribution patterns of objects in semantic maps, and using the map of the explored regions during navigation as the condition to generate the map of the unknown regions, thereby realizing the semantic reasoning of the target object, i.e., diffusion as reasoning (DAR). Meanwhile, we propose the global target bias and local LLM bias methods, where the former can constrain the diffusion model to generate the target object more effectively, and the latter utilizes the common sense knowledge extracted from the LLM to improve the generalization of the reasoning process. Based on the generated map in the unknown region, the agent sets the predicted location of the target as the goal and moves towards it. Experiments on Gibson and MP3D show the effectiveness of our method.
Abstract:Transferring visual-language knowledge from large-scale foundation models for video recognition has proved to be effective. To bridge the domain gap, additional parametric modules are added to capture the temporal information. However, zero-shot generalization diminishes with the increase in the number of specialized parameters, making existing works a trade-off between zero-shot and close-set performance. In this paper, we present MoTE, a novel framework that enables generalization and specialization to be balanced in one unified model. Our approach tunes a mixture of temporal experts to learn multiple task views with various degrees of data fitting. To maximally preserve the knowledge of each expert, we propose \emph{Weight Merging Regularization}, which regularizes the merging process of experts in weight space. Additionally with temporal feature modulation to regularize the contribution of temporal feature during test. We achieve a sound balance between zero-shot and close-set video recognition tasks and obtain state-of-the-art or competitive results on various datasets, including Kinetics-400 \& 600, UCF, and HMDB. Code is available at \url{https://github.com/ZMHH-H/MoTE}.