Abstract:As graphs grow larger, full-batch GNN training becomes hard for single GPU memory. Therefore, to enhance the scalability of GNN training, some studies have proposed sampling-based mini-batch training and distributed graph learning. However, these methods still have drawbacks, such as performance degradation and heavy communication. This paper introduces SliceGCN, a feature-sliced distributed large-scale graph learning method. SliceGCN slices the node features, with each computing device, i.e., GPU, handling partial features. After each GPU processes its share, partial representations are obtained and concatenated to form complete representations, enabling a single GPU's memory to handle the entire graph structure. This aims to avoid the accuracy loss typically associated with mini-batch training (due to incomplete graph structures) and to reduce inter-GPU communication during message passing (the forward propagation process of GNNs). To study and mitigate potential accuracy reductions due to slicing features, this paper proposes feature fusion and slice encoding. Experiments were conducted on six node classification datasets, yielding some interesting analytical results. These results indicate that while SliceGCN does not enhance efficiency on smaller datasets, it does improve efficiency on larger datasets. Additionally, we found that SliceGCN and its variants have better convergence, feature fusion and slice encoding can make training more stable, reduce accuracy fluctuations, and this study also discovered that the design of SliceGCN has a potentially parameter-efficient nature.
Abstract:Super-resolution reconstruction techniques entail the utilization of software algorithms to transform one or more sets of low-resolution images captured from the same scene into high-resolution images. In recent years, considerable advancement has been observed in the domain of single-image super-resolution algorithms, particularly those based on deep learning techniques. Nevertheless, the extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms. These issues result in the network architecture being unable to effectively utilize the diverse range of information at different levels. The loss of high-frequency details is significant, and the final reconstructed image features are overly smooth, with a lack of fine texture details. This negatively impacts the subjective visual quality of the image. The objective is to recover high-quality, high-resolution images from low-resolution images. In this work, an enhanced deep convolutional neural network model is employed, comprising multiple convolutional layers, each of which is configured with specific filters and activation functions to effectively capture the diverse features of the image. Furthermore, a residual learning strategy is employed to accelerate training and enhance the convergence of the network, while sub-pixel convolutional layers are utilized to refine the high-frequency details and textures of the image. The experimental analysis demonstrates the superior performance of the proposed model on multiple public datasets when compared with the traditional bicubic interpolation method and several other learning-based super-resolution methods. Furthermore, it proves the model's efficacy in maintaining image edges and textures.
Abstract:Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.