Abstract:Graph classification benchmarks, vital for assessing and developing graph neural networks (GNNs), have recently been scrutinized, as simple methods like MLPs have demonstrated comparable performance. This leads to an important question: Do these benchmarks effectively distinguish the advancements of GNNs over other methodologies? If so, how do we quantitatively measure this effectiveness? In response, we first propose an empirical protocol based on a fair benchmarking framework to investigate the performance discrepancy between simple methods and GNNs. We further propose a novel metric to quantify the dataset effectiveness by considering both dataset complexity and model performance. To the best of our knowledge, our work is the first to thoroughly study and provide an explicit definition for dataset effectiveness in the graph learning area. Through testing across 16 real-world datasets, we found our metric to align with existing studies and intuitive assumptions. Finally, we explore the causes behind the low effectiveness of certain datasets by investigating the correlation between intrinsic graph properties and class labels, and we developed a novel technique supporting the correlation-controllable synthetic dataset generation. Our findings shed light on the current understanding of benchmark datasets, and our new platform could fuel the future evolution of graph classification benchmarks.
Abstract:Traffic flow forecasting is a highly challenging task due to the dynamic spatial-temporal road conditions. Graph neural networks (GNN) has been widely applied in this task. However, most of these GNNs ignore the effects of time-varying road conditions due to the fixed range of the convolution receptive field. In this paper, we propose a novel Adaptive Graph Convolution Networks (AGC-net) to address this issue in GNN. The AGC-net is constructed by the Adaptive Graph Convolution (AGC) based on a novel context attention mechanism, which consists of a set of graph wavelets with various learnable scales. The AGC transforms the spatial graph representations into time-sensitive features considering the temporal context. Moreover, a shifted graph convolution kernel is designed to enhance the AGC, which attempts to correct the deviations caused by inaccurate topology. Experimental results on two public traffic datasets demonstrate the effectiveness of the AGC-net\footnote{Code is available at: https://github.com/zhengdaoli/AGC-net} which outperforms other baseline models significantly.
Abstract:Sign language recognition and translation first uses a recognition module to generate glosses from sign language videos and then employs a translation module to translate glosses into spoken sentences. Most existing works focus on the recognition step, while paying less attention to sign language translation. In this work, we propose a task-aware instruction network, namely TIN-SLT, for sign language translation, by introducing the instruction module and the learning-based feature fuse strategy into a Transformer network. In this way, the pre-trained model's language ability can be well explored and utilized to further boost the translation performance. Moreover, by exploring the representation space of sign language glosses and target spoken language, we propose a multi-level data augmentation scheme to adjust the data distribution of the training set. We conduct extensive experiments on two challenging benchmark datasets, PHOENIX-2014-T and ASLG-PC12, on which our method outperforms former best solutions by 1.65 and 1.42 in terms of BLEU-4. Our code is published at https://github.com/yongcaoplus/TIN-SLT.