Abstract:The multiplayer online battle arena (MOBA) games have become increasingly popular in recent years. Consequently, many efforts have been devoted to providing pre-game or in-game predictions for them. However, these works are limited in the following two aspects: 1) the lack of sufficient in-game features; 2) the absence of interpretability in the prediction results. These two limitations greatly restrict the practical performance and industrial application of the current works. In this work, we collect and release a large-scale dataset containing rich in-game features for the popular MOBA game Honor of Kings. We then propose to predict four types of important events in an interpretable way by attributing the predictions to the input features using two gradient-based attribution methods: Integrated Gradients and SmoothGrad. To evaluate the explanatory power of different models and attribution methods, a fidelity-based evaluation metric is further proposed. Finally, we evaluate the accuracy and Fidelity of several competitive methods on the collected dataset to assess how well machines predict events in MOBA games.
Abstract:With the rapid prevalence and explosive development of MOBA esports (Multiplayer Online Battle Arena electronic sports), many research efforts have been devoted to automatically predicting the game results (win predictions). While this task has great potential in various applications such as esports live streaming and game commentator AI systems, previous studies suffer from two major limitations: 1) insufficient real-time input features and high-quality training data; 2) non-interpretable inference processes of the black-box prediction models. To mitigate these issues, we collect and release a large-scale dataset that contains real-time game records with rich input features of the popular MOBA game Honor of Kings. For interpretable predictions, we propose a Two-Stage Spatial-Temporal Network (TSSTN) that can not only provide accurate real-time win predictions but also attribute the ultimate prediction results to the contributions of different features for interpretability. Experiment results and applications in real-world live streaming scenarios show that the proposed TSSTN model is effective both in prediction accuracy and interpretability.