Abstract:By encoding computing tasks, coded computing can not only mitigate straggling problems in federated learning (FL), but also preserve privacy of sensitive data uploaded/contributed by participating mobile users (MUs) to the centralized server, owned by a mobile application provider (MAP). However, these advantages come with extra coding cost/complexity and communication overhead (referred to as \emph{privacy cost}) that must be considered given the limited computing/communications resources at MUs/MAP, the rationality and incentive competition among MUs in contributing data to the MAP. This article proposes a novel coded FL-based framework for a privacy-aware mobile application service to address these challenges. In particular, the MAP first determines a set of the best MUs for the FL process based on MUs' provided information/features. Then, each selected MU can propose a contract to the MAP according to its expected trainable local data and privacy-protected coded data. To find the optimal contracts that can maximize utilities of the MAP and all the participating MUs while maintaining high learning quality of the whole system, we first develop a multi-principal one-agent contract-based problem leveraging coded FL-based multiple utility functions under the MUs' privacy cost, the MAP's limited computing resource, and asymmetric information between the MAP and MUs. Then, we transform the problem into an equivalent low-complexity problem and develop an iterative algorithm to solve it. Experiments with a real-world dataset show that our framework can speed up training time up to 49% and improve prediction accuracy up to 4.6 times while enhancing network's social welfare, i.e., total utility of all participating entities, up to 114% under the privacy cost consideration compared with those of baseline methods.
Abstract:With outstanding features, Machine Learning (ML) has been the backbone of numerous applications in wireless networks. However, the conventional ML approaches have been facing many challenges in practical implementation, such as the lack of labeled data, the constantly changing wireless environments, the long training process, and the limited capacity of wireless devices. These challenges, if not addressed, will impede the effectiveness and applicability of ML in future wireless networks. To address these problems, Transfer Learning (TL) has recently emerged to be a very promising solution. The core idea of TL is to leverage and synthesize distilled knowledge from similar tasks as well as from valuable experiences accumulated from the past to facilitate the learning of new problems. Doing so, TL techniques can reduce the dependence on labeled data, improve the learning speed, and enhance the ML methods' robustness to different wireless environments. This article aims to provide a comprehensive survey on applications of TL in wireless networks. Particularly, we first provide an overview of TL including formal definitions, classification, and various types of TL techniques. We then discuss diverse TL approaches proposed to address emerging issues in wireless networks. The issues include spectrum management, localization, signal recognition, security, human activity recognition and caching, which are all important to next-generation networks such as 5G and beyond. Finally, we highlight important challenges, open issues, and future research directions of TL in future wireless networks.
Abstract:Federated learning (FL) can empower Internet-of-Vehicles (IoV) networks by leveraging smart vehicles (SVs) to participate in the learning process with minimum data exchanges and privacy disclosure. The collected data and learned knowledge can help the vehicular service provider (VSP) improve the global model accuracy, e.g., for road safety as well as better profits for both VSP and participating SVs. Nonetheless, there exist major challenges when implementing the FL in IoV networks, such as dynamic activities and diverse quality-of-information (QoI) from a large number of SVs, VSP's limited payment budget, and profit competition among SVs. In this paper, we propose a novel dynamic FL-based economic framework for an IoV network to address these challenges. Specifically, the VSP first implements an SV selection method to determine a set of the best SVs for the FL process according to the significance of their current locations and information history at each learning round. Then, each selected SV can collect on-road information and offer a payment contract to the VSP based on its collected QoI. For that, we develop a multi-principal one-agent contract-based policy to maximize the profits of the VSP and learning SVs under the VSP's limited payment budget and asymmetric information between the VSP and SVs. Through experimental results using real-world on-road datasets, we show that our framework can converge 57% faster (even with only 10% of active SVs in the network) and obtain much higher social welfare of the network (up to 27.2 times) compared with those of other baseline FL methods.
Abstract:In this paper, we propose novel approaches using state-of-the-art machine learning techniques, aiming at predicting energy demand for electric vehicle (EV) networks. These methods can learn and find the correlation of complex hidden features to improve the prediction accuracy. First, we propose an energy demand learning (EDL)-based prediction solution in which a charging station provider (CSP) gathers information from all charging stations (CSs) and then performs the EDL algorithm to predict the energy demand for the considered area. However, this approach requires frequent data sharing between the CSs and the CSP, thereby driving communication overhead and privacy issues for the EVs and CSs. To address this problem, we propose a federated energy demand learning (FEDL) approach which allows the CSs sharing their information without revealing real datasets. Specifically, the CSs only need to send their trained models to the CSP for processing. In this case, we can significantly reduce the communication overhead and effectively protect data privacy for the EV users. To further improve the effectiveness of the FEDL, we then introduce a novel clustering-based EDL approach for EV networks by grouping the CSs into clusters before applying the EDL algorithms. Through experimental results, we show that our proposed approaches can improve the accuracy of energy demand prediction up to 24.63% and decrease communication overhead by 83.4% compared with other baseline machine learning algorithms.