Abstract:Critical scenario generation requires the ability of finding critical parameter combinations from the infinite parameter space in the logic scenario. Existing solutions aims to explore the correlation of parameters in the initial scenario without considering the connection between the parameters in the action sequence. How to model action sequences and consider the effects of different action parameter in the scenario remains a key challenge to solve the problem. In this paper, we propose a framework to generate critical scenarios for speeding up evaluating specific tasks. Specifically, we first propose a description language, BTScenario, to model the scenario, which contains the map, actors, interactions between actors, and oracles. We then use reinforcement learning to search for combinations of critical parameters. By adopting the action mask, the effects of non-fixed length and sequences in parameter space can be prevented. We demonstrate that the proposed framework is more efficient than random test and combination test methods in various scenarios.
Abstract:Owing to the merits of early safety and reliability guarantee, autonomous driving virtual testing has recently gains increasing attention compared with closed-loop testing in real scenarios. Although the availability and quality of autonomous driving datasets and toolsets are the premise to diagnose the autonomous driving system bottlenecks and improve the system performance, due to the diversity and privacy of the datasets and toolsets, collecting and featuring the perspective and quality of them become not only time-consuming but also increasingly challenging. This paper first proposes a Systematic Literature review approach for Autonomous driving tests (SLA), then presents an overview of existing publicly available datasets and toolsets from 2000 to 2020. Quantitative findings with the scenarios concerned, perspectives and trend inferences and suggestions with 35 automated driving test tool sets and 70 test data sets are also presented. To the best of our knowledge, we are the first to perform such recent empirical survey on both the datasets and toolsets using a SLA based survey approach. Our multifaceted analyses and new findings not only reveal insights that we believe are useful for system designers, practitioners and users, but also can promote more researches on a systematic survey analysis in autonomous driving surveys on dataset and toolsets.