Abstract:A plain well-trained deep learning model often does not have the ability to learn new knowledge without forgetting the previously learned knowledge, which is known as the catastrophic forgetting. Here we propose a novel method, SupportNet, to solve the catastrophic forgetting problem in class incremental learning scenario efficiently and effectively. SupportNet combines the strength of deep learning and support vector machine (SVM), where SVM is used to identify the support data from the old data, which are fed to the deep learning model together with the new data for further training so that the model can review the essential information of the old data when learning the new information. Two powerful consolidation regularizers are applied to ensure the robustness of the learned model. Comprehensive experiments on various tasks, including enzyme function prediction, subcellular structure classification and breast tumor classification, show that SupportNet drastically outperforms the state-of-the-art incremental learning methods and even reaches similar performance as the deep learning model trained from scratch on both old and new data. Our program is accessible at: https://github.com/lykaust15/SupportNet