Abstract:Retrieval-Augmented Large Language Models (RALMs) have made significant strides in enhancing the accuracy of generated responses.However, existing research often overlooks the data quality issues within retrieval results, often caused by inaccurate existing vector-distance-based retrieval methods.We propose to boost the precision of RALMs' answers from a data quality perspective through the Context-Driven Index Trimming (CDIT) framework, where Context Matching Dependencies (CMDs) are employed as logical data quality rules to capture and regulate the consistency between retrieved contexts.Based on the semantic comprehension capabilities of Large Language Models (LLMs), CDIT can effectively identify and discard retrieval results that are inconsistent with the query context and further modify indexes in the database, thereby improving answer quality.Experiments demonstrate on challenging question-answering tasks.Also, the flexibility of CDIT is verified through its compatibility with various language models and indexing methods, which offers a promising approach to bolster RALMs' data quality and retrieval precision jointly.
Abstract:Analyzing radar signals from complex Electronic Warfare (EW) environment is a non-trivial task.However, in the real world, the changing EW environment results in inconsistent signal distribution, such as the pulse repetition interval (PRI) mismatch between different detected scenes.In this paper, we propose a novel domain generalization framework to improve the adaptability of signal recognition in changing environments.Specifically, we first design several noise generators to simulate varied scenes. Different from conventional augmentation methods, our introduced generators carefully enhance the diversity of the detected signals and meanwhile maintain the semantic features of the signals. Moreover, we propose a signal scene domain classifier that works in the manner of adversarial learning. The proposed classifier guarantees the signal predictor to generalize to different scenes. Extensive comparative experiments prove the proposed method's superiority.