Abstract:Tensegrity structures are becoming widely used in robotics, such as continuously bending soft manipulators and mobile robots to explore unknown and uneven environments dynamically. Estimating their shape, which is the foundation of their state, is essential for establishing control. However, on-board sensor-based shape estimation remains difficult despite its importance, because tensegrity structures lack well-defined joints, which makes it challenging to use conventional angle sensors such as potentiometers or encoders for shape estimation. To our knowledge, no existing work has successfully achieved shape estimation using only onboard sensors such as Inertial Measurement Units (IMUs). This study addresses this issue by proposing a novel approach that uses energy minimization to estimate the shape. We validated our method through experiments on a simple Class 1 tensegrity structure, and the results show that the proposed algorithm can estimate the real-time shape of the structure using onboard sensors, even in the presence of external disturbances.
Abstract:This paper introduces a novel approach for modeling the dynamics of soft robots, utilizing a differentiable filter architecture. The proposed approach enables end-to-end training to learn system dynamics, noise characteristics, and temporal behavior of the robot. A novel spatio-temporal embedding process is discussed to handle observations with varying sensor placements and sampling frequencies. The efficacy of this approach is demonstrated on a tensegrity robot arm by learning end-effector dynamics from demonstrations with complex bending motions. The model is proven to be robust against missing modalities, diverse sensor placement, and varying sampling rates. Additionally, the proposed framework is shown to identify physical interactions with humans during motion. The utilization of a differentiable filter presents a novel solution to the difficulties of modeling soft robot dynamics. Our approach shows substantial improvement in accuracy compared to state-of-the-art filtering methods, with at least a 24% reduction in mean absolute error (MAE) observed. Furthermore, the predicted end-effector positions show an average MAE of 25.77mm from the ground truth, highlighting the advantage of our approach. The code is available at https://github.com/ir-lab/soft_robot_DEnKF.
Abstract:Our team, Hibikino-Musashi@Home (HMA), was founded in 2010. It is based in Japan in the Kitakyushu Science and Research Park. Since 2010, we have annually participated in the RoboCup@Home Japan Open competition in the open platform league (OPL).We participated as an open platform league team in the 2017 Nagoya RoboCup competition and as a domestic standard platform league (DSPL) team in the 2017 Nagoya, 2018 Montreal, 2019 Sydney, and 2021 Worldwide RoboCup competitions.We also participated in theWorld Robot Challenge (WRC) 2018 in the service-robotics category of the partner-robot challenge (real space) and won first place. Currently, we have 27 members from nine different laboratories within the Kyushu Institute of Technology and the university of Kitakyushu. In this paper, we introduce the activities that have been performed by our team and the technologies that we use.