Abstract:Photoacoustic microscopy (PAM) is a novel implementation of photoacoustic imaging (PAI) for visualizing the 3D bio-structure, which is realized by raster scanning of the tissue. However, as three involved critical imaging parameters, imaging speed, lateral resolution, and penetration depth have mutual effect to one the other. The improvement of one parameter results in the degradation of other two parameters, which constrains the overall performance of the PAM system. Here, we propose to break these limitations by hardware and software co-design. Starting with low lateral resolution, low sampling rate AR-PAM imaging which possesses the deep penetration capability, we aim to enhance the lateral resolution and up sampling the images, so that high speed, super resolution, and deep penetration for the PAM system (HSD-PAM) can be achieved. Data-driven based algorithm is a promising approach to solve this issue, thereby a dedicated novel dual branch fusion network is proposed, which includes a high resolution branch and a high speed branch. Since the availability of switchable AR-OR-PAM imaging system, the corresponding low resolution, undersample AR-PAM and high resolution, full sampled OR-PAM image pairs are utilized for training the network. Extensive simulation and in vivo experiments have been conducted to validate the trained model, enhancement results have proved the proposed algorithm achieved the best perceptual and quantitative image quality. As a result, the imaging speed is increased 16 times and the imaging lateral resolution is improved 5 times, while the deep penetration merit of AR-PAM modality is still reserved.
Abstract:Face recognition has recently become ubiquitous in many scenes for authentication or security purposes. Meanwhile, there are increasing concerns about the privacy of face images, which are sensitive biometric data that should be carefully protected. Software-based cryptosystems are widely adopted nowadays to encrypt face images, but the security level is limited by insufficient digital secret key length or computing power. Hardware-based optical cryptosystems can generate enormously longer secret keys and enable encryption at light speed, but most reported optical methods, such as double random phase encryption, are less compatible with other systems due to system complexity. In this study, a plain yet high-efficient speckle-based optical cryptosystem is proposed and implemented. A scattering ground glass is exploited to generate physical secret keys of gigabit length and encrypt face images via seemingly random optical speckles at light speed. Face images can then be decrypted from the random speckles by a well-trained decryption neural network, such that face recognition can be realized with up to 98% accuracy. The proposed cryptosystem has wide applicability, and it may open a new avenue for high-security complex information encryption and decryption by utilizing optical speckles.