Abstract:The Document Set Expansion (DSE) task involves identifying relevant documents from large collections based on a limited set of example documents. Previous research has highlighted Positive and Unlabeled (PU) learning as a promising approach for this task. However, most PU methods rely on the unrealistic assumption of knowing the class prior for positive samples in the collection. To address this limitation, this paper introduces a novel PU learning framework that utilizes intractable density estimation models. Experiments conducted on PubMed and Covid datasets in a transductive setting showcase the effectiveness of the proposed method for DSE. Code is available from https://github.com/Beautifuldog01/Document-set-expansion-puDE.
Abstract:Document set expansion aims to identify relevant documents from a large collection based on a small set of documents that are on a fine-grained topic. Previous work shows that PU learning is a promising method for this task. However, some serious issues remain unresolved, i.e. typical challenges that PU methods suffer such as unknown class prior and imbalanced data, and the need for transductive experimental settings. In this paper, we propose a novel PU learning framework based on density estimation, called puDE, that can handle the above issues. The advantage of puDE is that it neither constrained to the SCAR assumption and nor require any class prior knowledge. We demonstrate the effectiveness of the proposed method using a series of real-world datasets and conclude that our method is a better alternative for the DSE task.