Abstract:Understanding the mechanisms behind Vision Transformer (ViT), particularly its vulnerability to adversarial perturba tions, is crucial for addressing challenges in its real-world applications. Existing ViT adversarial attackers rely on la bels to calculate the gradient for perturbation, and exhibit low transferability to other structures and tasks. In this paper, we present a label-free white-box attack approach for ViT-based models that exhibits strong transferability to various black box models, including most ViT variants, CNNs, and MLPs, even for models developed for other modalities. Our inspira tion comes from the feature collapse phenomenon in ViTs, where the critical attention mechanism overly depends on the low-frequency component of features, causing the features in middle-to-end layers to become increasingly similar and eventually collapse. We propose the feature diversity attacker to naturally accelerate this process and achieve remarkable performance and transferability.
Abstract:In spite of the rapidly evolving landscape of text-to-image generation, the synthesis and manipulation of multiple entities while adhering to specific relational constraints pose enduring challenges. This paper introduces an innovative progressive synthesis and editing operation that systematically incorporates entities into the target image, ensuring their adherence to spatial and relational constraints at each sequential step. Our key insight stems from the observation that while a pre-trained text-to-image diffusion model adeptly handles one or two entities, it often falters when dealing with a greater number. To address this limitation, we propose harnessing the capabilities of a Large Language Model (LLM) to decompose intricate and protracted text descriptions into coherent directives adhering to stringent formats. To facilitate the execution of directives involving distinct semantic operations-namely insertion, editing, and erasing-we formulate the Stimulus, Response, and Fusion (SRF) framework. Within this framework, latent regions are gently stimulated in alignment with each operation, followed by the fusion of the responsive latent components to achieve cohesive entity manipulation. Our proposed framework yields notable advancements in object synthesis, particularly when confronted with intricate and lengthy textual inputs. Consequently, it establishes a new benchmark for text-to-image generation tasks, further elevating the field's performance standards.