Guizhou University, Guiyang, China
Abstract:As a critical application of computational intelligence in remote sensing, deep learning-based synthetic aperture radar (SAR) image target recognition facilitates intelligent perception but typically relies on centralized training, where multi-source SAR data are uploaded to a single server, raising privacy and security concerns. Federated learning (FL) provides an emerging computational intelligence paradigm for SAR image target recognition, enabling cross-site collaboration while preserving local data privacy. However, FL confronts critical security risks, where malicious clients can exploit SAR's multiplicative speckle noise to conceal backdoor triggers, severely challenging the robustness of the computational intelligence model. To address this challenge, we propose NADAFD, a noise-aware and dynamically adaptive federated defense framework that integrates frequency-domain, spatial-domain, and client-behavior analyses to counter SAR-specific backdoor threats. Specifically, we introduce a frequency-domain collaborative inversion mechanism to expose cross-client spectral inconsistencies indicative of hidden backdoor triggers. We further design a noise-aware adversarial training strategy that embeds $Γ$-distributed speckle characteristics into mask-guided adversarial sample generation to enhance robustness against both backdoor attacks and SAR speckle noise. In addition, we present a dynamic health assessment module that tracks client update behaviors across training rounds and adaptively adjusts aggregation weights to mitigate evolving malicious contributions. Experiments on MSTAR and OpenSARShip datasets demonstrate that NADAFD achieves higher accuracy on clean test samples and a lower backdoor attack success rate on triggered inputs than existing federated backdoor defenses for SAR target recognition.
Abstract:Dental fluorosis is a chronic disease caused by long-term overconsumption of fluoride, which leads to changes in the appearance of tooth enamel. It is an important basis for early non-invasive diagnosis of endemic fluorosis. However, even dental professionals may not be able to accurately distinguish dental fluorosis and its severity based on tooth images. Currently, there is still a gap in research on applying deep learning to diagnosing dental fluorosis. Therefore, we construct the first open-source dental fluorosis image dataset (DFID), laying the foundation for deep learning research in this field. To advance the diagnosis of dental fluorosis, we propose a pioneering deep learning model called masked latent transformer with the random masking ratio (MLTrMR). MLTrMR introduces a mask latent modeling scheme based on Vision Transformer to enhance contextual learning of dental fluorosis lesion characteristics. Consisting of a latent embedder, encoder, and decoder, MLTrMR employs the latent embedder to extract latent tokens from the original image, whereas the encoder and decoder comprising the latent transformer (LT) block are used to process unmasked tokens and predict masked tokens, respectively. To mitigate the lack of inductive bias in Vision Transformer, which may result in performance degradation, the LT block introduces latent tokens to enhance the learning capacity of latent lesion features. Furthermore, we design an auxiliary loss function to constrain the parameter update direction of the model. MLTrMR achieves 80.19% accuracy, 75.79% F1, and 81.28% quadratic weighted kappa on DFID, making it state-of-the-art (SOTA).