Abstract:Although being widely adopted for evaluating generated audio signals, the Fr\'echet Audio Distance (FAD) suffers from significant limitations, including reliance on Gaussian assumptions, sensitivity to sample size, and high computational complexity. As an alternative, we introduce the Kernel Audio Distance (KAD), a novel, distribution-free, unbiased, and computationally efficient metric based on Maximum Mean Discrepancy (MMD). Through analysis and empirical validation, we demonstrate KAD's advantages: (1) faster convergence with smaller sample sizes, enabling reliable evaluation with limited data; (2) lower computational cost, with scalable GPU acceleration; and (3) stronger alignment with human perceptual judgments. By leveraging advanced embeddings and characteristic kernels, KAD captures nuanced differences between real and generated audio. Open-sourced in the kadtk toolkit, KAD provides an efficient, reliable, and perceptually aligned benchmark for evaluating generative audio models.
Abstract:Foley sound, audio content inserted synchronously with videos, plays a critical role in the user experience of multimedia content. Recently, there has been active research in Foley sound synthesis, leveraging the advancements in deep generative models. However, such works mainly focus on replicating a single sound class or a textual sound description, neglecting temporal information, which is crucial in the practical applications of Foley sound. We present T-Foley, a Temporal-event-guided waveform generation model for Foley sound synthesis. T-Foley generates high-quality audio using two conditions: the sound class and temporal event feature. For temporal conditioning, we devise a temporal event feature and a novel conditioning technique named Block-FiLM. T-Foley achieves superior performance in both objective and subjective evaluation metrics and generates Foley sound well-synchronized with the temporal events. Additionally, we showcase T-Foley's practical applications, particularly in scenarios involving vocal mimicry for temporal event control. We show the demo on our companion website.
Abstract:Existing multi-instrumental datasets tend to be biased toward pop and classical music. In addition, they generally lack high-level annotations such as emotion tags. In this paper, we propose YM2413-MDB, an 80s FM video game music dataset with multi-label emotion annotations. It includes 669 audio and MIDI files of music from Sega and MSX PC games in the 80s using YM2413, a programmable sound generator based on FM. The collected game music is arranged with a subset of 15 monophonic instruments and one drum instrument. They were converted from binary commands of the YM2413 sound chip. Each song was labeled with 19 emotion tags by two annotators and validated by three verifiers to obtain refined tags. We provide the baseline models and results for emotion recognition and emotion-conditioned symbolic music generation using YM2413-MDB.