Abstract:The goal of this work is to generate natural speech in multiple languages while maintaining the same speaker identity, a task known as cross-lingual speech synthesis. A key challenge of cross-lingual speech synthesis is the language-speaker entanglement problem, which causes the quality of cross-lingual systems to lag behind that of intra-lingual systems. In this paper, we propose CrossSpeech++, which effectively disentangles language and speaker information and significantly improves the quality of cross-lingual speech synthesis. To this end, we break the complex speech generation pipeline into two simple components: language-dependent and speaker-dependent generators. The language-dependent generator produces linguistic variations that are not biased by specific speaker attributes. The speaker-dependent generator models acoustic variations that characterize speaker identity. By handling each type of information in separate modules, our method can effectively disentangle language and speaker representation. We conduct extensive experiments using various metrics, and demonstrate that CrossSpeech++ achieves significant improvements in cross-lingual speech synthesis, outperforming existing methods by a large margin.
Abstract:The goal of this work is to simultaneously generate natural talking faces and speech outputs from text. We achieve this by integrating Talking Face Generation (TFG) and Text-to-Speech (TTS) systems into a unified framework. We address the main challenges of each task: (1) generating a range of head poses representative of real-world scenarios, and (2) ensuring voice consistency despite variations in facial motion for the same identity. To tackle these issues, we introduce a motion sampler based on conditional flow matching, which is capable of high-quality motion code generation in an efficient way. Moreover, we introduce a novel conditioning method for the TTS system, which utilises motion-removed features from the TFG model to yield uniform speech outputs. Our extensive experiments demonstrate that our method effectively creates natural-looking talking faces and speech that accurately match the input text. To our knowledge, this is the first effort to build a multimodal synthesis system that can generalise to unseen identities.
Abstract:While recent text-to-speech (TTS) systems have made remarkable strides toward human-level quality, the performance of cross-lingual TTS lags behind that of intra-lingual TTS. This gap is mainly rooted from the speaker-language entanglement problem in cross-lingual TTS. In this paper, we propose CrossSpeech which improves the quality of cross-lingual speech by effectively disentangling speaker and language information in the level of acoustic feature space. Specifically, CrossSpeech decomposes the speech generation pipeline into the speaker-independent generator (SIG) and speaker-dependent generator (SDG). The SIG produces the speaker-independent acoustic representation which is not biased to specific speaker distributions. On the other hand, the SDG models speaker-dependent speech variation that characterizes speaker attributes. By handling each information separately, CrossSpeech can obtain disentangled speaker and language representations. From the experiments, we verify that CrossSpeech achieves significant improvements in cross-lingual TTS, especially in terms of speaker similarity to the target speaker.