Abstract:In our study, we explore methods for detecting unwanted content lurking in visual datasets. We provide a theoretical analysis demonstrating that a model capable of successfully partitioning visual data can be obtained using only textual data. Based on the analysis, we propose Hassle-Free Textual Training (HFTT), a streamlined method capable of acquiring detectors for unwanted visual content, using only synthetic textual data in conjunction with pre-trained vision-language models. HFTT features an innovative objective function that significantly reduces the necessity for human involvement in data annotation. Furthermore, HFTT employs a clever textual data synthesis method, effectively emulating the integration of unknown visual data distribution into the training process at no extra cost. The unique characteristics of HFTT extend its utility beyond traditional out-of-distribution detection, making it applicable to tasks that address more abstract concepts. We complement our analyses with experiments in out-of-distribution detection and hateful image detection. Our codes are available at https://github.com/Saehyung-Lee/HFTT
Abstract:The learning-augmented multi-option ski rental problem generalizes the classical ski rental problem in two ways: the algorithm is provided with a prediction on the number of days we can ski, and the ski rental options now come with a variety of rental periods and prices to choose from, unlike the classical two-option setting. Subsequent to the initial study of the multi-option ski rental problem (without learning augmentation) due to Zhang, Poon, and Xu, significant progress has been made for this problem recently in particular. The problem is very well understood when we relinquish one of the two generalizations -- for the learning-augmented classical ski rental problem, algorithms giving best-possible trade-off between consistency and robustness exist; for the multi-option ski rental problem without learning augmentation, deterministic/randomized algorithms giving the best-possible competitiveness have been found. However, in presence of both generalizations, there remained a huge gap between the algorithmic and impossibility results. In fact, for randomized algorithms, we did not have any nontrivial lower bounds on the consistency-robustness trade-off before. This paper bridges this gap for both deterministic and randomized algorithms. For deterministic algorithms, we present a best-possible algorithm that completely matches the known lower bound. For randomized algorithms, we show the first nontrivial lower bound on the consistency-robustness trade-off, and also present an improved randomized algorithm. Our algorithm matches our lower bound on robustness within a factor of e/2 when the consistency is at most 1.086.
Abstract:In this paper, we present improved learning-augmented algorithms for the multi-option ski rental problem. Learning-augmented algorithms take ML predictions as an added part of the input and incorporates these predictions in solving the given problem. Due to their unique strength that combines the power of ML predictions with rigorous performance guarantees, they have been extensively studied in the context of online optimization problems. Even though ski rental problems are one of the canonical problems in the field of online optimization, only deterministic algorithms were previously known for multi-option ski rental, with or without learning augmentation. We present the first randomized learning-augmented algorithm for this problem, surpassing previous performance guarantees given by deterministic algorithms. Our learning-augmented algorithm is based on a new, provably best-possible randomized competitive algorithm for the problem. Our results are further complemented by lower bounds for deterministic and randomized algorithms, and computational experiments evaluating our algorithms' performance improvements.