Abstract:The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a crucial role in understanding the organization and functioning of complex systems. We begin by introducing the concept of community structure, which refers to the arrangement of vertices into clusters, with strong internal connections and weaker connections between clusters. Then, we provide a thorough exposition of various community detection methods, including a new method designed by us. Additionally, we explore real-world applications of community detection in diverse networks. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs. It serves as a valuable resource for researchers and practitioners in multiple disciplines, offering insights into the challenges, methodologies, and applications of community detection in complex networks.
Abstract:Community detection becomes an important problem with the booming of social networks. As an excellent clustering algorithm, Mean-Shift can not be applied directly to community detection, since Mean-Shift can only handle data with coordinates, while the data in the community detection problem is mostly represented by a graph that can be treated as data with a distance matrix (or similarity matrix). Fortunately, a new clustering algorithm called Medoid-Shift is proposed. The Medoid-Shift algorithm preserves the benefits of Mean-Shift and can be applied to problems based on distance matrix, such as community detection. One drawback of the Medoid-Shift algorithm is that there may be no data points within the neighborhood region defined by a distance parameter. To deal with the community detection problem better, a new algorithm called Revised Medoid-Shift (RMS) in this work is thus proposed. During the process of finding the next medoid, the RMS algorithm is based on a neighborhood defined by KNN, while the original Medoid-Shift is based on a neighborhood defined by a distance parameter. Since the neighborhood defined by KNN is more stable than the one defined by the distance parameter in terms of the number of data points within the neighborhood, the RMS algorithm may converge more smoothly. In the RMS method, each of the data points is shifted towards a medoid within the neighborhood defined by KNN. After the iterative process of shifting, each of the data point converges into a cluster center, and the data points converging into the same center are grouped into the same cluster.
Abstract:The ever-increasing demands for intuitive interactions in Virtual Reality has triggered a boom in the realm of Facial Expression Recognition (FER). To address the limitations in existing approaches (e.g., narrow receptive fields and homogenous supervisory signals) and further cement the capacity of FER tools, a novel multifarious supervision-steering Transformer for FER in the wild is proposed in this paper. Referred as FER-former, our approach features multi-granularity embedding integration, hybrid self-attention scheme, and heterogeneous domain-steering supervision. In specific, to dig deep into the merits of the combination of features provided by prevailing CNNs and Transformers, a hybrid stem is designed to cascade two types of learning paradigms simultaneously. Wherein, a FER-specific transformer mechanism is devised to characterize conventional hard one-hot label-focusing and CLIP-based text-oriented tokens in parallel for final classification. To ease the issue of annotation ambiguity, a heterogeneous domains-steering supervision module is proposed to make image features also have text-space semantic correlations by supervising the similarity between image features and text features. On top of the collaboration of multifarious token heads, diverse global receptive fields with multi-modal semantic cues are captured, thereby delivering superb learning capability. Extensive experiments on popular benchmarks demonstrate the superiority of the proposed FER-former over the existing state-of-the-arts.