Abstract:We uncover a phenomenon largely overlooked by the scientific community utilizing AI: neural networks exhibit high susceptibility to minute perturbations, resulting in significant deviations in their outputs. Through an analysis of five diverse application areas -- weather forecasting, chemical energy and force calculations, fluid dynamics, quantum chromodynamics, and wireless communication -- we demonstrate that this vulnerability is a broad and general characteristic of AI systems. This revelation exposes a hidden risk in relying on neural networks for essential scientific computations, calling further studies on their reliability and security.
Abstract:Document-level relation extraction aims to discover relations between entities across a whole document. How to build the dependency of entities from different sentences in a document remains to be a great challenge. Current approaches either leverage syntactic trees to construct document-level graphs or aggregate inference information from different sentences. In this paper, we build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions. Adopting aggressive linking strategy, intermediate relations are reasoned on the document-level graphs by mention convolution. We further notice the generalization problem of NA instances, which is caused by incomplete annotation and worsened by fully-connected mention pairs. An improved ranking loss is proposed to attend this problem. Experiments show the connections between different mentions are crucial to document-level relation extraction, which enables the model to extract more meaningful higher-level compositional relations.