Abstract:Recently, the surge of efficient and automated 3D AI-generated content (AIGC) methods has increasingly illuminated the path of transforming human imagination into complex 3D structures. However, the automated generation of 3D content is still significantly lags in industrial application. This gap exists because 3D modeling demands high-quality assets with sharp geometry, exquisite topology, and physically based rendering (PBR), among other criteria. To narrow the disparity between generated results and artists' expectations, we introduce GraphicsDreamer, a method for creating highly usable 3D meshes from single images. To better capture the geometry and material details, we integrate the PBR lighting equation into our cross-domain diffusion model, concurrently predicting multi-view color, normal, depth images, and PBR materials. In the geometry fusion stage, we continue to enforce the PBR constraints, ensuring that the generated 3D objects possess reliable texture details, supporting realistic relighting. Furthermore, our method incorporates topology optimization and fast UV unwrapping capabilities, allowing the 3D products to be seamlessly imported into graphics engines. Extensive experiments demonstrate that our model can produce high quality 3D assets in a reasonable time cost compared to previous methods.
Abstract:Low-resolution infrared-based human activity recognition (HAR) attracted enormous interests due to its low-cost and private. In this paper, a novel semi-supervised crossdomain neural network (SCDNN) based on 8 $\times$ 8 low-resolution infrared sensor is proposed for accurately identifying human activity despite changes in the environment at a low-cost. The SCDNN consists of feature extractor, domain discriminator and label classifier. In the feature extractor, the unlabeled and minimal labeled target domain data are trained for domain adaptation to achieve a mapping of the source domain and target domain data. The domain discriminator employs the unsupervised learning to migrate data from the source domain to the target domain. The label classifier obtained from training the source domain data improves the recognition of target domain activities due to the semi-supervised learning utilized in training the target domain data. Experimental results show that the proposed method achieves 92.12\% accuracy for recognition of activities in the target domain by migrating the source and target domains. The proposed approach adapts superior to cross-domain scenarios compared to the existing deep learning methods, and it provides a low-cost yet highly adaptable solution for cross-domain scenarios.