Abstract:Noise removal of images is an essential preprocessing procedure for many computer vision tasks. Currently, many denoising models based on deep neural networks can perform well in removing the noise with known distributions (i.e. the additive Gaussian white noise). However eliminating real noise is still a very challenging task, since real-world noise often does not simply follow one single type of distribution, and the noise may spatially vary. In this paper, we present a new dual convolutional neural network (CNN) with attention for image blind denoising, named as the DCANet. To the best of our knowledge, the proposed DCANet is the first work that integrates both the dual CNN and attention mechanism for image denoising. The DCANet is composed of a noise estimation network, a spatial and channel attention module (SCAM), and a CNN with a dual structure. The noise estimation network is utilized to estimate the spatial distribution and the noise level in an image. The noisy image and its estimated noise are combined as the input of the SCAM, and a dual CNN contains two different branches is designed to learn the complementary features to obtain the denoised image. The experimental results have verified that the proposed DCANet can suppress both synthetic and real noise effectively. The code of DCANet is available at https://github.com/WenCongWu/DCANet.
Abstract:To predict lung nodule malignancy with a high sensitivity and specificity, we propose a fusion algorithm that combines handcrafted features (HF) into the features learned at the output layer of a 3D deep convolutional neural network (CNN). First, we extracted twenty-nine handcrafted features, including nine intensity features, eight geometric features, and twelve texture features based on grey-level co-occurrence matrix (GLCM) averaged from thirteen directions. We then trained 3D CNNs modified from three state-of-the-art 2D CNN architectures (AlexNet, VGG-16 Net and Multi-crop Net) to extract the CNN features learned at the output layer. For each 3D CNN, the CNN features combined with the 29 handcrafted features were used as the input for the support vector machine (SVM) coupled with the sequential forward feature selection (SFS) method to select the optimal feature subset and construct the classifiers. The fusion algorithm takes full advantage of the handcrafted features and the highest level CNN features learned at the output layer. It can overcome the disadvantage of the handcrafted features that may not fully reflect the unique characteristics of a particular lesion by combining the intrinsic CNN features. Meanwhile, it also alleviates the requirement of a large scale annotated dataset for the CNNs based on the complementary of handcrafted features. The patient cohort includes 431 malignant nodules and 795 benign nodules extracted from the LIDC/IDRI database. For each investigated CNN architecture, the proposed fusion algorithm achieved the highest AUC, accuracy, sensitivity, and specificity scores among all competitive classification models.