Abstract:Visual grounding is an essential tool that links user-provided text queries with query-specific regions within an image. Despite advancements in visual grounding models, their ability to comprehend complex queries remains limited. To overcome this limitation, we introduce LLM-Optic, an innovative method that utilizes Large Language Models (LLMs) as an optical lens to enhance existing visual grounding models in comprehending complex text queries involving intricate text structures, multiple objects, or object spatial relationships, situations that current models struggle with. LLM-Optic first employs an LLM as a Text Grounder to interpret complex text queries and accurately identify objects the user intends to locate. Then a pre-trained visual grounding model is used to generate candidate bounding boxes given the refined query by the Text Grounder. After that, LLM-Optic annotates the candidate bounding boxes with numerical marks to establish a connection between text and specific image regions, thereby linking two distinct modalities. Finally, it employs a Large Multimodal Model (LMM) as a Visual Grounder to select the marked candidate objects that best correspond to the original text query. Through LLM-Optic, we have achieved universal visual grounding, which allows for the detection of arbitrary objects specified by arbitrary human language input. Importantly, our method achieves this enhancement without requiring additional training or fine-tuning. Extensive experiments across various challenging benchmarks demonstrate that LLM-Optic achieves state-of-the-art zero-shot visual grounding capabilities. Project Page: https://haoyu-zhao.github.io/LLM-Optic.github.io/.
Abstract:Conditional diffusion models have demonstrated impressive performance in image manipulation tasks. The general pipeline involves adding noise to the image and then denoising it. However, this method faces a trade-off problem: adding too much noise affects the fidelity of the image while adding too little affects its editability. This largely limits their practical applicability. In this paper, we propose a novel framework, Selective Diffusion Distillation (SDD), that ensures both the fidelity and editability of images. Instead of directly editing images with a diffusion model, we train a feedforward image manipulation network under the guidance of the diffusion model. Besides, we propose an effective indicator to select the semantic-related timestep to obtain the correct semantic guidance from the diffusion model. This approach successfully avoids the dilemma caused by the diffusion process. Our extensive experiments demonstrate the advantages of our framework. Code is released at https://github.com/AndysonYs/Selective-Diffusion-Distillation.
Abstract:Text-to-image diffusion models have advanced towards more controllable generation via supporting various image conditions (e.g., depth map) beyond text. However, these models are learned based on the premise of perfect alignment between the text and image conditions. If this alignment is not satisfied, the final output could be either dominated by one condition, or ambiguity may arise, failing to meet user expectations. To address this issue, we present a training-free approach called "Decompose and Realign'' to further improve the controllability of existing models when provided with partially aligned conditions. The ``Decompose'' phase separates conditions based on pair relationships, computing scores individually for each pair. This ensures that each pair no longer has conflicting conditions. The "Realign'' phase aligns these independently calculated scores via a cross-attention mechanism to avoid new conflicts when combing them back. Both qualitative and quantitative results demonstrate the effectiveness of our approach in handling unaligned conditions, which performs favorably against recent methods and more importantly adds flexibility to the controllable image generation process.
Abstract:Generalizable neural surface reconstruction techniques have attracted great attention in recent years. However, they encounter limitations of low confidence depth distribution and inaccurate surface reasoning due to the oversimplified volume rendering process employed. In this paper, we present Reconstruction TRansformer (ReTR), a novel framework that leverages the transformer architecture to redesign the rendering process, enabling complex photon-particle interaction modeling. It introduces a learnable meta-ray token and utilizes the cross-attention mechanism to simulate the interaction of photons with sampled points and render the observed color. Meanwhile, by operating within a high-dimensional feature space rather than the color space, ReTR mitigates sensitivity to projected colors in source views. Such improvements result in accurate surface assessment with high confidence. We demonstrate the effectiveness of our approach on various datasets, showcasing how our method outperforms the current state-of-the-art approaches in terms of reconstruction quality and generalization ability.