Abstract:Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
Abstract:Adverse social interactions, such as bullying, harassment, and other illicit activities, pose significant threats to individual well-being and public safety, leaving profound impacts on physical and mental health. However, these critical events frequently occur in privacy-sensitive environments like restrooms, and changing rooms, where conventional surveillance is prohibited or severely restricted by stringent privacy regulations and ethical concerns. Here, we propose the Single-Pixel Vision-Language Model (SP-VLM), a novel framework that reimagines secure environmental monitoring. It achieves intrinsic privacy-by-design by capturing human dynamics through inherently low-dimensional single-pixel modalities and inferring complex behavioral patterns via seamless vision-language integration. Building on this framework, we demonstrate that single-pixel sensing intrinsically suppresses identity recoverability, rendering state-of-the-art face recognition systems ineffective below a critical sampling rate. We further show that SP-VLM can nonetheless extract meaningful behavioral semantics, enabling robust anomaly detection, people counting, and activity understanding from severely degraded single-pixel observations. Combining these findings, we identify a practical sampling-rate regime in which behavioral intelligence emerges while personal identity remains strongly protected. Together, these results point to a human-rights-aligned pathway for safety monitoring that can support timely intervention without normalizing intrusive surveillance in privacy-sensitive spaces.
Abstract:Large Language Model (LLM) training often optimizes for preference alignment, rewarding outputs that are perceived as helpful and interaction-friendly. However, this preference-oriented objective can be exploited: manipulative prompts can steer responses toward user-appeasing agreement and away from truth-oriented correction. In this work, we investigate whether aligned models are vulnerable to Preference-Undermining Attacks (PUA), a class of manipulative prompting strategies designed to exploit the model's desire to please user preferences at the expense of truthfulness. We propose a diagnostic methodology that provides a finer-grained and more directive analysis than aggregate benchmark scores, using a factorial evaluation framework to decompose prompt-induced shifts into interpretable effects of system objectives (truth- vs. preference-oriented) and PUA-style dialogue factors (directive control, personal derogation, conditional approval, reality denial) within a controlled $2 \times 2^4$ design. Surprisingly, more advanced models are sometimes more susceptible to manipulative prompts. Beyond the dominant reality-denial factor, we observe model-specific sign reversals and interactions with PUA-style factors, suggesting tailored defenses rather than uniform robustness. These findings offer a novel, reproducible factorial evaluation methodology that provides finer-grained diagnostics for post-training processes like RLHF, enabling better trade-offs in the product iteration of LLMs by offering a more nuanced understanding of preference alignment risks and the impact of manipulative prompts.

Abstract:We discovered the underlying physics in Next-token Prediction (NTP). We identified the law of information conservation within NTP and proposed the First Law of Information Capacity (IC-1), demonstrating that the essence of intelligence emergence in auto-regressive models is fundamentally a process of information transfer. We also introduced Landauer's Principle into NTP, formulating the Second Law of Information Capacity (IC-2), which establishes the relationship between auto-regressive model training and energy consumption. Additionally, we presented several corollaries, which hold practical significance for production practices. Finally, we validated the compatibility and complementarity of our findings with existing theories.