Abstract:Current text-video retrieval methods mainly rely on cross-modal matching between queries and videos to calculate their similarity scores, which are then sorted to obtain retrieval results. This method considers the matching between each candidate video and the query, but it incurs a significant time cost and will increase notably with the increase of candidates. Generative models are common in natural language processing and computer vision, and have been successfully applied in document retrieval, but their application in multimodal retrieval remains unexplored. To enhance retrieval efficiency, in this paper, we introduce a model-based video indexer named T2VIndexer, which is a sequence-to-sequence generative model directly generating video identifiers and retrieving candidate videos with constant time complexity. T2VIndexer aims to reduce retrieval time while maintaining high accuracy. To achieve this goal, we propose video identifier encoding and query-identifier augmentation approaches to represent videos as short sequences while preserving their semantic information. Our method consistently enhances the retrieval efficiency of current state-of-the-art models on four standard datasets. It enables baselines with only 30\%-50\% of the original retrieval time to achieve better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%), ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at https://github.com/Lilidamowang/T2VIndexer-generativeSearch.
Abstract:Knowledge-based visual question answering requires external knowledge beyond visible content to answer the question correctly. One limitation of existing methods is that they focus more on modeling the inter-modal and intra-modal correlations, which entangles complex multimodal clues by implicit embeddings and lacks interpretability and generalization ability. The key challenge to solve the above problem is to separate the information and process it separately at the functional level. By reusing each processing unit, the generalization ability of the model to deal with different data can be increased. In this paper, we propose Independent Inference Units (IIU) for fine-grained multi-modal reasoning to decompose intra-modal information by the functionally independent units. Specifically, IIU processes each semantic-specific intra-modal clue by an independent inference unit, which also collects complementary information by communication from different units. To further reduce the impact of redundant information, we propose a memory update module to maintain semantic-relevant memory along with the reasoning process gradually. In comparison with existing non-pretrained multi-modal reasoning models on standard datasets, our model achieves a new state-of-the-art, enhancing performance by 3%, and surpassing basic pretrained multi-modal models. The experimental results show that our IIU model is effective in disentangling intra-modal clues as well as reasoning units to provide explainable reasoning evidence. Our code is available at https://github.com/Lilidamowang/IIU.