Abstract:In this paper, a proof-of-concept study of a $1$-bit wideband reconfigurable intelligent surface (RIS) comprising planar tightly coupled dipoles (PTCD) is presented. The developed RIS operates at subTHz frequencies and a $3$-dB gain bandwidth of $27.4\%$ with the center frequency at $102$ GHz is shown to be obtainable via full-wave electromagnetic simulations. The binary phase shift offered by each RIS unit element is enabled by changing the polarization of the reflected wave by $180^\circ$. The proposed PTCD-based RIS has a planar configuration with one dielectric layer bonded to a ground plane, and hence, it can be fabricated by using cost-effective printed circuit board (PCB) technology. We analytically calculate the response of the entire designed RIS and showcase that a good agreement between that result and equivalent full-wave simulations is obtained. To efficiently compute the $1$-bit RIS response for different pointing directions, thus, designing a directive beam codebook, we devise a fast approximate beamforming optimization approach, which is compared with time-consuming full-wave simulations. Finally, to prove our concept, we present several passive prototypes with frozen beams for the proposed $1$-bit wideband RIS.
Abstract:Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.
Abstract:Large text-to-image models have shown remarkable performance in synthesizing high-quality images. In particular, the subject-driven model makes it possible to personalize the image synthesis for a specific subject, e.g., a human face or an artistic style, by fine-tuning the generic text-to-image model with a few images from that subject. Nevertheless, misuse of subject-driven image synthesis may violate the authority of subject owners. For example, malicious users may use subject-driven synthesis to mimic specific artistic styles or to create fake facial images without authorization. To protect subject owners against such misuse, recent attempts have commonly relied on adversarial examples to indiscriminately disrupt subject-driven image synthesis. However, this essentially prevents any benign use of subject-driven synthesis based on protected images. In this paper, we take a different angle and aim at protection without sacrificing the utility of protected images for general synthesis purposes. Specifically, we propose GenWatermark, a novel watermark system based on jointly learning a watermark generator and a detector. In particular, to help the watermark survive the subject-driven synthesis, we incorporate the synthesis process in learning GenWatermark by fine-tuning the detector with synthesized images for a specific subject. This operation is shown to largely improve the watermark detection accuracy and also ensure the uniqueness of the watermark for each individual subject. Extensive experiments validate the effectiveness of GenWatermark, especially in practical scenarios with unknown models and text prompts (74% Acc.), as well as partial data watermarking (80% Acc. for 1/4 watermarking). We also demonstrate the robustness of GenWatermark to two potential countermeasures that substantially degrade the synthesis quality.