Abstract:Imitation learning techniques have been shown to be highly effective in real-world control scenarios, such as robotics. However, these approaches not only suffer from compounding error issues but also require human experts to provide complete trajectories. Although there exist interactive methods where an expert oversees the robot and intervenes if needed, these extensions usually only utilize the data collected during intervention periods and ignore the feedback signal hidden in non-intervention timesteps. In this work, we create a model to formulate how the interventions occur in such cases, and show that it is possible to learn a policy with just a handful of expert interventions. Our key insight is that it is possible to get crucial information about the quality of the current state and the optimality of the chosen action from expert feedback, regardless of the presence or the absence of intervention. We evaluate our method on various discrete and continuous simulation environments, a real-world robotic manipulation task, as well as a human subject study. Videos and the code can be found at https://liralab.usc.edu/mile .
Abstract:We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at https://cyber-demo.github.io