Abstract:Text-to-Speech (TTS) and Voice Conversion (VC) models have exhibited remarkable performance in generating realistic and natural audio. However, their dark side, audio deepfake poses a significant threat to both society and individuals. Existing countermeasures largely focus on determining the genuineness of speech based on complete original audio recordings, which however often contain private content. This oversight may refrain deepfake detection from many applications, particularly in scenarios involving sensitive information like business secrets. In this paper, we propose SafeEar, a novel framework that aims to detect deepfake audios without relying on accessing the speech content within. Our key idea is to devise a neural audio codec into a novel decoupling model that well separates the semantic and acoustic information from audio samples, and only use the acoustic information (e.g., prosody and timbre) for deepfake detection. In this way, no semantic content will be exposed to the detector. To overcome the challenge of identifying diverse deepfake audio without semantic clues, we enhance our deepfake detector with real-world codec augmentation. Extensive experiments conducted on four benchmark datasets demonstrate SafeEar's effectiveness in detecting various deepfake techniques with an equal error rate (EER) down to 2.02%. Simultaneously, it shields five-language speech content from being deciphered by both machine and human auditory analysis, demonstrated by word error rates (WERs) all above 93.93% and our user study. Furthermore, our benchmark constructed for anti-deepfake and anti-content recovery evaluation helps provide a basis for future research in the realms of audio privacy preservation and deepfake detection.
Abstract:Currently, video behavior recognition is one of the most foundational tasks of computer vision. The 2D neural networks of deep learning are built for recognizing pixel-level information such as images with RGB, RGB-D, or optical flow formats, with the current increasingly wide usage of surveillance video and more tasks related to human action recognition. There are increasing tasks requiring temporal information for frames dependency analysis. The researchers have widely studied video-based recognition rather than image-based(pixel-based) only to extract more informative elements from geometry tasks. Our current related research addresses multiple novel proposed research works and compares their advantages and disadvantages between the derived deep learning frameworks rather than machine learning frameworks. The comparison happened between existing frameworks and datasets, which are video format data only. Due to the specific properties of human actions and the increasingly wide usage of deep neural networks, we collected all research works within the last three years between 2020 to 2022. In our article, the performance of deep neural networks surpassed most of the techniques in the feature learning and extraction tasks, especially video action recognition.