Abstract:Due to their excellent drug-like and pharmacokinetic properties, small molecule drugs are widely used to treat various diseases, making them a critical component of drug discovery. In recent years, with the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance in prediction accuracy, speed, and complex molecular relationship modeling compared to traditional machine learning approaches. These advancements enhance drug screening efficiency and optimization, and they provide more precise and effective solutions for various drug discovery tasks. Contributing to this field's development, this paper aims to systematically summarize and generalize the recent key tasks and representative techniques in DL-based small molecule drug discovery in recent years. Specifically, we provide an overview of the major tasks in small molecule drug discovery and their interrelationships. Next, we analyze the six core tasks, summarizing the related methods, commonly used datasets, and technological development trends. Finally, we discuss key challenges, such as interpretability and out-of-distribution generalization, and offer our insights into future research directions for DL-assisted small molecule drug discovery.
Abstract:Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby preventing error propagation during diffusion process. Guided by physically and chemically detailed textual descriptions, TransDLM samples and optimizes encoded source molecules, retaining core scaffolds of source molecules and ensuring structural similarities. Moreover, TransDLM enables simultaneous sampling of multiple molecules, making it ideal for scalable, efficient large-scale optimization through distributed computation on web platforms. Furthermore, our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset. The code is available at: https://anonymous.4open.science/r/TransDLM-A901.