Abstract:The paper explores the challenges of regression analysis in evolving data streams, an area that remains relatively underexplored compared to classification. We propose a standardized evaluation process for regression and prediction interval tasks in streaming contexts. Additionally, we introduce an innovative drift simulation strategy capable of synthesizing various drift types, including the less-studied incremental drift. Comprehensive experiments with state-of-the-art methods, conducted under the proposed process, validate the effectiveness and robustness of our approach.
Abstract:CapyMOA is an open-source library designed for efficient machine learning on streaming data. It provides a structured framework for real-time learning and evaluation, featuring a flexible data representation. CapyMOA includes an extensible architecture that allows integration with external frameworks such as MOA and PyTorch, facilitating hybrid learning approaches that combine traditional online algorithms with deep learning techniques. By emphasizing adaptability, scalability, and usability, CapyMOA allows researchers and practitioners to tackle dynamic learning challenges across various domains.
Abstract:This paper introduces a group of novel datasets representing real-time time-series and streaming data of energy prices in New Zealand, sourced from the Electricity Market Information (EMI) website maintained by the New Zealand government. The datasets are intended to address the scarcity of proper datasets for streaming regression learning tasks. We conduct extensive analyses and experiments on these datasets, covering preprocessing techniques, regression tasks, prediction intervals, concept drift detection, and anomaly detection. Our experiments demonstrate the datasets' utility and highlight the challenges and opportunities for future research in energy price forecasting.