Abstract:Glaucoma is an incurable ophthalmic disease that damages the optic nerve, leads to vision loss, and ranks among the leading causes of blindness worldwide. Diagnosing glaucoma typically involves fundus photography, optical coherence tomography (OCT), and visual field testing. However, the high cost of OCT often leads to reliance on fundus photography and visual field testing, both of which exhibit inherent inter-observer variability. This stems from glaucoma being a multifaceted disease that influenced by various factors. As a result, glaucoma diagnosis is highly subjective, emphasizing the necessity of calibration, which aligns predicted probabilities with actual disease likelihood. Proper calibration is essential to prevent overdiagnosis or misdiagnosis, which are critical concerns for high-risk diseases. Although AI has significantly improved diagnostic accuracy, overconfidence in models have worsen calibration performance. Recent study has begun focusing on calibration for glaucoma. Nevertheless, previous study has not fully considered glaucoma's systemic nature and the high subjectivity in its diagnostic process. To overcome these limitations, we propose V-ViT (Voting-based ViT), a novel framework that enhances calibration by incorporating disease-specific characteristics. V-ViT integrates binocular data and metadata, reflecting the multi-faceted nature of glaucoma diagnosis. Additionally, we introduce a MC dropout-based Voting System to address high subjectivity. Our approach achieves state-of-the-art performance across all metrics, including accuracy, demonstrating that our proposed methods are effective in addressing calibration issues. We validate our method using a custom dataset including binocular data.
Abstract:With rise of interventional cardiology, Catheter Ablation Therapy (CAT) has established itself as a first-line solution to treat cardiac arrhythmia. Although CAT is a promising technique, cardiologist lacks vision inside the body during the procedure, which may cause serious clinical syndromes. To support accurate clinical procedure, Contact Force Sensing (CFS) system is developed to find a position of the catheter tip through the measure of contact force between catheter and heart tissue. However, the practical usability of commercialized CFS systems is not fully understood due to inaccuracy in the measurement. To support the development of more accurate system, we develop a full pipeline of CFS system with newly collected benchmark dataset through a contact force sensing catheter in simplest hardware form. Our dataset was roughly collected with human noise to increase data diversity. Through the analysis of the dataset, we identify a problem defined as Shift of Reference (SoR), which prevents accurate measurement of contact force. To overcome the problem, we conduct the contact force estimation via standard deep neural networks including for Recurrent Neural Network (RNN), Fully Convolutional Network (FCN) and Transformer. An average error in measurement for RNN, FCN and Transformer are, respectively, 2.46g, 3.03g and 3.01g. Through these studies, we try to lay a groundwork, serve a performance criteria for future CFS system research and open a publicly available dataset to public.