Abstract:With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.
Abstract:As foundation models (FMs) continue to shape the landscape of AI, the in-context learning (ICL) paradigm thrives but also encounters issues such as toxicity, hallucination, disparity, adversarial vulnerability, and inconsistency. Ensuring the reliability and responsibility of FMs is crucial for the sustainable development of the AI ecosystem. In this concise overview, we investigate recent advancements in enhancing the reliability and trustworthiness of FMs within ICL frameworks, focusing on four key methodologies, each with its corresponding subgoals. We sincerely hope this paper can provide valuable insights for researchers and practitioners endeavoring to build safe and dependable FMs and foster a stable and consistent ICL environment, thereby unlocking their vast potential.