Abstract:Recent research has explored the memorization capacity of multi-head attention, but these findings are constrained by unrealistic limitations on the context size. We present a novel proof for language-based Transformers that extends the current hypothesis to any context size. Our approach improves upon the state-of-the-art by achieving more effective exact memorization with an attention layer, while also introducing the concept of approximate memorization of distributions. Through experimental validation, we demonstrate that our proposed bounds more accurately reflect the true memorization capacity of language models, and provide a precise comparison with prior work.
Abstract:This paper introduces a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on the adaptation of Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals significant insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges faced by current LLMs in generating diverse and high-quality text.
Abstract:Rejection sampling methods have recently been proposed to improve the performance of discriminator-based generative models. However, these methods are only optimal under an unlimited sampling budget, and are usually applied to a generator trained independently of the rejection procedure. We first propose an Optimal Budgeted Rejection Sampling (OBRS) scheme that is provably optimal with respect to \textit{any} $f$-divergence between the true distribution and the post-rejection distribution, for a given sampling budget. Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance. Through experiments and supporting theory, we show that the proposed methods are effective in significantly improving the quality and diversity of the samples.
Abstract:Mixtures of classifiers (a.k.a. randomized ensembles) have been proposed as a way to improve robustness against adversarial attacks. However, it has been shown that existing attacks are not well suited for this kind of classifiers. In this paper, we discuss the problem of attacking a mixture in a principled way and introduce two desirable properties of attacks based on a geometrical analysis of the problem (effectiveness and maximality). We then show that existing attacks do not meet both of these properties. Finally, we introduce a new attack called lattice climber attack with theoretical guarantees on the binary linear setting, and we demonstrate its performance by conducting experiments on synthetic and real datasets.
Abstract:Achieving a balance between image quality (precision) and diversity (recall) is a significant challenge in the domain of generative models. Current state-of-the-art models primarily rely on optimizing heuristics, such as the Fr\'echet Inception Distance. While recent developments have introduced principled methods for evaluating precision and recall, they have yet to be successfully integrated into the training of generative models. Our main contribution is a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows, which explicitly optimizes a user-defined trade-off between precision and recall. More precisely, we show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the \mbox{\em PR-divergences}. Conversely, any $f$-divergence can be written as a linear combination of PR-divergences and corresponds to a weighted precision-recall trade-off. Through comprehensive evaluations, we show that our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
Abstract:Deep neural networks are known to be vulnerable to adversarial attacks: A small perturbation that is imperceptible to a human can easily make a well-trained deep neural network misclassify. To defend against adversarial attacks, randomized classifiers have been proposed as a robust alternative to deterministic ones. In this work we show that in the binary classification setting, for any randomized classifier, there is always a deterministic classifier with better adversarial risk. In other words, randomization is not necessary for robustness. In many common randomization schemes, the deterministic classifiers with better risk are explicitly described: For example, we show that ensembles of classifiers are more robust than mixtures of classifiers, and randomized smoothing is more robust than input noise injection. Finally, experiments confirm our theoretical results with the two families of randomized classifiers we analyze.
Abstract:Generative models can have distinct mode of failures like mode dropping and low quality samples, which cannot be captured by a single scalar metric. To address this, recent works propose evaluating generative models using precision and recall, where precision measures quality of samples and recall measures the coverage of the target distribution. Although a variety of discrepancy measures between the target and estimated distribution are used to train generative models, it is unclear what precision-recall trade-offs are achieved by various choices of the discrepancy measures. In this paper, we show that achieving a specified precision-recall trade-off corresponds to minimising -divergences from a family we call the {\em PR-divergences }. Conversely, any -divergence can be written as a linear combination of PR-divergences and therefore correspond to minimising a weighted precision-recall trade-off. Further, we propose a novel generative model that is able to train a normalizing flow to minimise any -divergence, and in particular, achieve a given precision-recall trade-off.
Abstract:Randomized smoothing is the dominant standard for provable defenses against adversarial examples. Nevertheless, this method has recently been proven to suffer from important information theoretic limitations. In this paper, we argue that these limitations are not intrinsic, but merely a byproduct of current certification methods. We first show that these certificates use too little information about the classifier, and are in particular blind to the local curvature of the decision boundary. This leads to severely sub-optimal robustness guarantees as the dimension of the problem increases. We then show that it is theoretically possible to bypass this issue by collecting more information about the classifier. More precisely, we show that it is possible to approximate the optimal certificate with arbitrary precision, by probing the decision boundary with several noise distributions. Since this process is executed at certification time rather than at test time, it entails no loss in natural accuracy while enhancing the quality of the certificates. This result fosters further research on classifier-specific certification and demonstrates that randomized smoothing is still worth investigating. Although classifier-specific certification may induce more computational cost, we also provide some theoretical insight on how to mitigate it.
Abstract:We propose the first regret-based approach to the Graphical Bilinear Bandits problem, where $n$ agents in a graph play a stochastic bilinear bandit game with each of their neighbors. This setting reveals a combinatorial NP-hard problem that prevents the use of any existing regret-based algorithm in the (bi-)linear bandit literature. In this paper, we fill this gap and present the first regret-based algorithm for graphical bilinear bandits using the principle of optimism in the face of uncertainty. Theoretical analysis of this new method yields an upper bound of $\tilde{O}(\sqrt{T})$ on the $\alpha$-regret and evidences the impact of the graph structure on the rate of convergence. Finally, we show through various experiments the validity of our approach.
Abstract:In this paper, we study the problem of consistency in the context of adversarial examples. Specifically, we tackle the following question: can surrogate losses still be used as a proxy for minimizing the $0/1$ loss in the presence of an adversary that alters the inputs at test-time? Different from the standard classification task, this question cannot be reduced to a point-wise minimization problem, and calibration needs not to be sufficient to ensure consistency. In this paper, we expose some pathological behaviors specific to the adversarial problem, and show that no convex surrogate loss can be consistent or calibrated in this context. It is therefore necessary to design another class of surrogate functions that can be used to solve the adversarial consistency issue. As a first step towards designing such a class, we identify sufficient and necessary conditions for a surrogate loss to be calibrated in both the adversarial and standard settings. Finally, we give some directions for building a class of losses that could be consistent in the adversarial framework.