Abstract:The rapid development of 3D acquisition technology has made it possible to obtain point clouds of real-world terrains. However, due to limitations in sensor acquisition technology or specific requirements, point clouds often contain defects such as holes with missing data. Inpainting algorithms are widely used to patch these holes. However, existing traditional inpainting algorithms rely on precise hole boundaries, which limits their ability to handle cases where the boundaries are not well-defined. On the other hand, learning-based completion methods often prioritize reconstructing the entire point cloud instead of solely focusing on hole filling. Based on the fact that real-world terrain exhibits both global smoothness and rich local detail, we propose a novel representation for terrain point clouds. This representation can help to repair the holes without clear boundaries. Specifically, it decomposes terrains into low-frequency and high-frequency components, which are represented by B-spline surfaces and relative height maps respectively. In this way, the terrain point cloud inpainting problem is transformed into a B-spline surface fitting and 2D image inpainting problem. By solving the two problems, the highly complex and irregular holes on the terrain point clouds can be well-filled, which not only satisfies the global terrain undulation but also exhibits rich geometric details. The experimental results also demonstrate the effectiveness of our method.
Abstract:Federated learning (FL) is an emerging approach for training machine learning models collaboratively while preserving data privacy. The need for privacy protection makes it difficult for FL models to achieve global transparency and explainability. To address this limitation, we incorporate logic-based explanations into FL by proposing the Logical Reasoning-based eXplainable Federated Learning (LR-XFL) approach. Under LR-XFL, FL clients create local logic rules based on their local data and send them, along with model updates, to the FL server. The FL server connects the local logic rules through a proper logical connector that is derived based on properties of client data, without requiring access to the raw data. In addition, the server also aggregates the local model updates with weight values determined by the quality of the clients' local data as reflected by their uploaded logic rules. The results show that LR-XFL outperforms the most relevant baseline by 1.19%, 5.81% and 5.41% in terms of classification accuracy, rule accuracy and rule fidelity, respectively. The explicit rule evaluation and expression under LR-XFL enable human experts to validate and correct the rules on the server side, hence improving the global FL model's robustness to errors. It has the potential to enhance the transparency of FL models for areas like healthcare and finance where both data privacy and explainability are important.
Abstract:Federated learning (FL) is an emerging paradigm of collaborative machine learning that preserves user privacy while building powerful models. Nevertheless, due to the nature of open participation by self-interested entities, it needs to guard against potential misbehaviours by legitimate FL participants. FL verification techniques are promising solutions for this problem. They have been shown to effectively enhance the reliability of FL networks and help build trust among participants. Verifiable federated learning has become an emerging topic of research that has attracted significant interest from the academia and the industry alike. Currently, there is no comprehensive survey on the field of verifiable federated learning, which is interdisciplinary in nature and can be challenging for researchers to enter into. In this paper, we bridge this gap by reviewing works focusing on verifiable FL. We propose a novel taxonomy for verifiable FL covering both centralised and decentralised FL settings, summarise the commonly adopted performance evaluation approaches, and discuss promising directions towards a versatile verifiable FL framework.
Abstract:Form 10-Q, the quarterly financial statement, is one of the most crucial filings for US public firms to disclose their financial and other relevant business operation information. Due to the gigantic number of 10-Q filings prevailing in the market for each quarter and diverse variations in the implementation of format given company-specific nature, it has long been a problem in the field to provide a generalized way to dissect and retrieve the itemized information. In this paper, we create a tool to itemize 10-Q filings using multi-stage processes, blending a rule-based algorithm with a CNN deep learning model. The implementation is an integrated pipeline which provides a solution to the item retrieval on a large scale. This would enable cross sectional and longitudinal textual analysis on massive number of companies.