CAS Key Laboratory of AI Safety, Institute of Computing Technology, CAS, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
Abstract:Process Reward Models (PRMs) have achieved strong results in complex reasoning, but are bottlenecked by costly process-level supervision. A widely used alternative, Monte Carlo Estimation (MCE), defines process rewards as the probability that a policy model reaches the correct final answer from a given reasoning step. However, step correctness is an intrinsic property of the reasoning trajectory, and should be invariant to policy choice. Our empirical findings show that MCE producing policy-dependent rewards that induce label noise, including false positives that reward incorrect steps and false negatives that penalize correct ones. To address above challenges, we propose a two-stage framework to mitigate noisy supervision. In the labeling stage, we introduce a reflection-aware label correction mechanism that uses a large language model (LLM) as a judge to detect reflection and self-correction behaviors related to the current reasoning step, thereby suppressing overestimated rewards. In the training stage, we further propose a \underline{\textbf{N}}oise-\underline{\textbf{A}}ware \underline{\textbf{I}}terative \underline{\textbf{T}}raining framework that enables the PRM to progressively refine noisy labels based on its own confidence. Extensive Experiments show that our method substantially improves step-level correctness discrimination, achieving up to a 27\% absolute gain in average F1 over PRMs trained with noisy supervision.
Abstract:Recent Omni-multimodal Large Language Models show promise in unified audio, vision, and text modeling. However, streaming audio-video understanding remains challenging, as existing approaches suffer from disjointed capabilities: they typically exhibit incomplete modality support or lack autonomous proactive monitoring. To address this, we present ROMA, a real-time omni-multimodal assistant for unified reactive and proactive interaction. ROMA processes continuous inputs as synchronized multimodal units, aligning dense audio with discrete video frames to handle granularity mismatches. For online decision-making, we introduce a lightweight speak head that decouples response initiation from generation to ensure precise triggering without task conflict. We train ROMA with a curated streaming dataset and a two-stage curriculum that progressively optimizes for streaming format adaptation and proactive responsiveness. To standardize the fragmented evaluation landscape, we reorganize diverse benchmarks into a unified suite covering both proactive (alert, narration) and reactive (QA) settings. Extensive experiments across 12 benchmarks demonstrate ROMA achieves state-of-the-art performance on proactive tasks while competitive in reactive settings, validating its robustness in unified real-time omni-multimodal understanding.
Abstract:External memory systems are pivotal for enabling Large Language Model (LLM) agents to maintain persistent knowledge and perform long-horizon decision-making. Existing paradigms typically follow a two-stage process: computationally expensive memory construction (e.g., structuring data into graphs) followed by naive retrieval-augmented generation. However, our empirical analysis reveals two fundamental limitations: complex construction incurs high costs with marginal performance gains, and simple context concatenation fails to bridge the gap between retrieval recall and reasoning accuracy. To address these challenges, we propose CoM (Chain-of-Memory), a novel framework that advocates for a paradigm shift toward lightweight construction paired with sophisticated utilization. CoM introduces a Chain-of-Memory mechanism that organizes retrieved fragments into coherent inference paths through dynamic evolution, utilizing adaptive truncation to prune irrelevant noise. Extensive experiments on the LongMemEval and LoCoMo benchmarks demonstrate that CoM outperforms strong baselines with accuracy gains of 7.5%-10.4%, while drastically reducing computational overhead to approximately 2.7% of token consumption and 6.0% of latency compared to complex memory architectures.
Abstract:Recent advances in large language models (LLMs) have enabled agents to autonomously execute complex, long-horizon tasks, yet planning remains a primary bottleneck for reliable task execution. Existing methods typically fall into two paradigms: step-wise planning, which is reactive but often short-sighted; and one-shot planning, which generates a complete plan upfront yet is brittle to execution errors. Crucially, both paradigms suffer from entangled contexts, where the agent must reason over a monolithic history spanning multiple sub-tasks. This entanglement increases cognitive load and lets local errors propagate across otherwise independent decisions, making recovery computationally expensive. To address this, we propose Task-Decoupled Planning (TDP), a training-free framework that replaces entangled reasoning with task decoupling. TDP decomposes tasks into a directed acyclic graph (DAG) of sub-goals via a Supervisor. Using a Planner and Executor with scoped contexts, TDP confines reasoning and replanning to the active sub-task. This isolation prevents error propagation and corrects deviations locally without disrupting the workflow. Results on TravelPlanner, ScienceWorld, and HotpotQA show that TDP outperforms strong baselines while reducing token consumption by up to 82%, demonstrating that sub-task decoupling improves both robustness and efficiency for long-horizon agents.
Abstract:Supervised fine-tuning (SFT) on chain-of-thought (CoT) trajectories demonstrations is a common approach for enabling reasoning in large language models. Standard practices typically only retain trajectories with correct final answers (positives) while ignoring the rest (negatives). We argue that this paradigm discards substantial supervision and exacerbates overfitting, limiting out-of-domain (OOD) generalization. Specifically, we surprisingly find that incorporating negative trajectories into SFT yields substantial OOD generalization gains over positive-only training, as these trajectories often retain valid intermediate reasoning despite incorrect final answers. To understand this effect in depth, we systematically analyze data, training dynamics, and inference behavior, identifying 22 recurring patterns in negative chains that serve a dual role: they moderate loss descent to mitigate overfitting during training and boost policy entropy by 35.67% during inference to facilitate exploration. Motivated by these observations, we further propose Gain-based LOss Weighting (GLOW), an adaptive, sample-aware scheme that exploits such distinctive training dynamics by rescaling per-sample loss based on inter-epoch progress. Empirically, GLOW efficiently leverages unfiltered trajectories, yielding a 5.51% OOD gain over positive-only SFT on Qwen2.5-7B and boosting MMLU from 72.82% to 76.47% as an RL initialization.
Abstract:Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.