Abstract:Spatio-temporal representational learning has been widely adopted in various fields such as action recognition, video object segmentation, and action anticipation. Previous spatio-temporal representational learning approaches primarily employ ConvNets or sequential models,e.g., LSTM, to learn the intra-frame and inter-frame features. Recently, Transformer models have successfully dominated the study of natural language processing (NLP), image classification, etc. However, the pure-Transformer based spatio-temporal learning can be prohibitively costly on memory and computation to extract fine-grained features from a tiny patch. To tackle the training difficulty and enhance the spatio-temporal learning, we construct a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent efficient Transformer design in NLP, this shifted chunk Transformer can learn hierarchical spatio-temporal features from a local tiny patch to a global video clip. Our shifted self-attention can also effectively model complicated inter-frame variances. Furthermore, we build a clip encoder based on Transformer to model long-term temporal dependencies. We conduct thorough ablation studies to validate each component and hyper-parameters in our shifted chunk Transformer, and it outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600, UCF101, and HMDB51. Code and trained models will be released.
Abstract:Effective detection of arrhythmia is an important task in the remote monitoring of electrocardiogram (ECG). The traditional ECG recognition depends on the judgment of the clinicians' experience, but the results suffer from the probability of human error due to the fatigue. To solve this problem, an ECG signal classification method based on the images is presented to classify ECG signals into normal and abnormal beats by using two-dimensional convolutional neural networks (2D-CNNs). First, we compare the accuracy and robustness between one-dimensional ECG signal input method and two-dimensional image input method in AlexNet network. Then, in order to alleviate the overfitting problem in two-dimensional network, we initialize AlexNet-like network with weights trained on ImageNet, to fit the training ECG images and fine-tune the model, and to further improve the accuracy and robustness of ECG classification. The performance evaluated on the MIT-BIH arrhythmia database demonstrates that the proposed method can achieve the accuracy of 98% and maintain high accuracy within SNR range from 20 dB to 35 dB. The experiment shows that the 2D-CNNs initialized with AlexNet weights performs better than one-dimensional signal method without a large-scale dataset.