Abstract:In this work, we introduce PII-Scope, a comprehensive benchmark designed to evaluate state-of-the-art methodologies for PII extraction attacks targeting LLMs across diverse threat settings. Our study provides a deeper understanding of these attacks by uncovering several hyperparameters (e.g., demonstration selection) crucial to their effectiveness. Building on this understanding, we extend our study to more realistic attack scenarios, exploring PII attacks that employ advanced adversarial strategies, including repeated and diverse querying, and leveraging iterative learning for continual PII extraction. Through extensive experimentation, our results reveal a notable underestimation of PII leakage in existing single-query attacks. In fact, we show that with sophisticated adversarial capabilities and a limited query budget, PII extraction rates can increase by up to fivefold when targeting the pretrained model. Moreover, we evaluate PII leakage on finetuned models, showing that they are more vulnerable to leakage than pretrained models. Overall, our work establishes a rigorous empirical benchmark for PII extraction attacks in realistic threat scenarios and provides a strong foundation for developing effective mitigation strategies.
Abstract:Privacy research has attracted wide attention as individuals worry that their private data can be easily leaked during interactions with smart devices, social platforms, and AI applications. Computer science researchers, on the other hand, commonly study privacy issues through privacy attacks and defenses on segmented fields. Privacy research is conducted on various sub-fields, including Computer Vision (CV), Natural Language Processing (NLP), and Computer Networks. Within each field, privacy has its own formulation. Though pioneering works on attacks and defenses reveal sensitive privacy issues, they are narrowly trapped and cannot fully cover people's actual privacy concerns. Consequently, the research on general and human-centric privacy research remains rather unexplored. In this paper, we formulate the privacy issue as a reasoning problem rather than simple pattern matching. We ground on the Contextual Integrity (CI) theory which posits that people's perceptions of privacy are highly correlated with the corresponding social context. Based on such an assumption, we develop the first comprehensive checklist that covers social identities, private attributes, and existing privacy regulations. Unlike prior works on CI that either cover limited expert annotated norms or model incomplete social context, our proposed privacy checklist uses the whole Health Insurance Portability and Accountability Act of 1996 (HIPAA) as an example, to show that we can resort to large language models (LLMs) to completely cover the HIPAA's regulations. Additionally, our checklist also gathers expert annotations across multiple ontologies to determine private information including but not limited to personally identifiable information (PII). We use our preliminary results on the HIPAA to shed light on future context-centric privacy research to cover more privacy regulations, social norms and standards.
Abstract:The latest and most impactful advances in large models stem from their increased size. Unfortunately, this translates into an improved memorization capacity, raising data privacy concerns. Specifically, it has been shown that models can output personal identifiable information (PII) contained in their training data. However, reported PIII extraction performance varies widely, and there is no consensus on the optimal methodology to evaluate this risk, resulting in underestimating realistic adversaries. In this work, we empirically demonstrate that it is possible to improve the extractability of PII by over ten-fold by grounding the prefix of the manually constructed extraction prompt with in-domain data. Our approach, PII-Compass, achieves phone number extraction rates of 0.92%, 3.9%, and 6.86% with 1, 128, and 2308 queries, respectively, i.e., the phone number of 1 person in 15 is extractable.
Abstract:This work addresses the timely yet underexplored problem of performing inference and finetuning of a proprietary LLM owned by a model provider entity on the confidential/private data of another data owner entity, in a way that ensures the confidentiality of both the model and the data. Hereby, the finetuning is conducted offsite, i.e., on the computation infrastructure of a third-party cloud provider. We tackle this problem by proposing ObfuscaTune, a novel, efficient and fully utility-preserving approach that combines a simple yet effective obfuscation technique with an efficient usage of confidential computing (only 5% of the model parameters are placed on TEE). We empirically demonstrate the effectiveness of ObfuscaTune by validating it on GPT-2 models with different sizes on four NLP benchmark datasets. Finally, we compare to a na\"ive version of our approach to highlight the necessity of using random matrices with low condition numbers in our approach to reduce errors induced by the obfuscation.
Abstract:In this work, we address the problem of text anonymization where the goal is to prevent adversaries from correctly inferring private attributes of the author, while keeping the text utility, i.e., meaning and semantics. We propose IncogniText, a technique that anonymizes the text to mislead a potential adversary into predicting a wrong private attribute value. Our empirical evaluation shows a reduction of private attribute leakage by more than 90%. Finally, we demonstrate the maturity of IncogniText for real-world applications by distilling its anonymization capability into a set of LoRA parameters associated with an on-device model.