Abstract:The ever-increasing reliance on wireless communication and sensing has led to growing concerns over the vulnerability of sensitive information to unauthorized detection and interception. Traditional anti-detection methods are often inadequate, suffering from limited adaptability and diminished effectiveness against advanced detection technologies. To overcome these challenges, this article presents the intelligent reflecting surface (IRS) as a groundbreaking technology for enabling flexible electromagnetic manipulation, which has the potential to revolutionize anti-detection in both electromagnetic stealth/spoofing (evading radar detection) and covert communications (facilitating secure information exchange). We explore the fundamental principles of IRS and its advantages over traditional anti-detection techniques and discuss various design challenges associated with implementing IRS-based anti-detection systems. Through the examination of case studies and future research directions, we provide a comprehensive overview of the potential of IRS technology to serve as a formidable shield in the modern wireless landscape.
Abstract:Electromagnetic wave absorbing material (EWAM) plays an essential role in manufacturing stealth aircraft, which can achieve the electromagnetic stealth (ES) by reducing the strength of the signal reflected back to the radar system. However, the stealth performance is limited by the coating thickness, incident wave angles, and working frequencies. To tackle these limitations, we propose a new intelligent reflecting surface (IRS)-aided ES system where an IRS is deployed at the target to synergize with EWAM for effectively mitigating the echo signal and thus reducing the radar detection probability. Considering the monotonic relationship between the detection probability and the received signal-to-noise-ratio (SNR) at the radar, we formulate an optimization problem that minimizes the SNR under the reflection constraint of each IRS element, and a semi-closed-form solution is derived by using Karush-Kuhn-Tucker (KKT) conditions. Simulation results validate the superiority of the proposed IRS-aided ES system compared to various benchmarks.
Abstract:While traditional electromagnetic stealth materials/metasurfaces can render a target virtually invisible to some extent, they lack flexibility and adaptability, and can only operate within a limited frequency and angle/direction range, making it challenging to ensure the expected stealth performance. In view of this, we propose in this paper a new intelligent reflecting surface (IRS)-aided electromagnetic stealth system mounted on targets to evade radar detection, by utilizing the tunable passive reflecting elements of IRS to achieve flexible and adaptive electromagnetic stealth in a cost-effective manner. Specifically, we optimize the IRS's reflection at the target to minimize the sum received signal power of all adversary radars. We first address the IRS's reflection optimization problem using the Lagrange multiplier method and derive a semi-closed-form optimal solution for the single-radar setup, which is then generalized to the multi-radar case. To meet real-time processing requirements, we further propose low-complexity closed-form solutions based on the reverse alignment/cancellation and minimum mean-square error (MMSE) criteria for the single-radar and multi-radar cases, respectively. Additionally, we propose practical low-complexity estimation schemes at the target to acquire angle-of-arrival (AoA) and/or path gain information via a small number of receive sensing devices. Simulation results validate the performance advantages of our proposed IRS-aided electromagnetic stealth system with the proposed IRS reflection designs.