Abstract:This paper presents a Geometric-Photometric Joint Alignment(GPJA) method, for accurately aligning human expressions by combining geometry and photometric information. Common practices for registering human heads typically involve aligning landmarks with facial template meshes using geometry processing approaches, but often overlook photometric consistency. GPJA overcomes this limitation by leveraging differentiable rendering to align vertices with target expressions, achieving joint alignment in geometry and photometric appearances automatically, without the need for semantic annotation or aligned meshes for training. It features a holistic rendering alignment strategy and a multiscale regularized optimization for robust and fast convergence. The method utilizes derivatives at vertex positions for supervision and employs a gradient-based algorithm which guarantees smoothness and avoids topological defects during the geometry evolution. Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional ICP-based methods and the state-of-the-art deep learning based method. In practical, our method enhances the efficiency of obtaining topology-consistent face models from multi-view stereo facial scanning.