Abstract:Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a FocusNet to extract depth from a single focal stack, a EDoFNet to obtain the extended depth of field (EDoF) image from the focal stack, and a StereoNet to conduct stereo matching. We then integrate them into a unified solution to obtain high quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems.
Abstract:Depth from defocus (DfD) and stereo matching are two most studied passive depth sensing schemes. The techniques are essentially complementary: DfD can robustly handle repetitive textures that are problematic for stereo matching whereas stereo matching is insensitive to defocus blurs and can handle large depth range. In this paper, we present a unified learning-based technique to conduct hybrid DfD and stereo matching. Our input is image triplets: a stereo pair and a defocused image of one of the stereo views. We first apply depth-guided light field rendering to construct a comprehensive training dataset for such hybrid sensing setups. Next, we adopt the hourglass network architecture to separately conduct depth inference from DfD and stereo. Finally, we exploit different connection methods between the two separate networks for integrating them into a unified solution to produce high fidelity 3D disparity maps. Comprehensive experiments on real and synthetic data show that our new learning-based hybrid 3D sensing technique can significantly improve accuracy and robustness in 3D reconstruction.