Abstract:Blind face restoration (BFR) is fundamentally challenged by the extensive range of degradation types and degrees that impact model generalization. Recent advancements in diffusion models have made considerable progress in this field. Nevertheless, a critical limitation is their lack of awareness of specific degradation, leading to potential issues such as unnatural details and inaccurate textures. In this paper, we equip diffusion models with the capability to decouple various degradation as a degradation prompt from low-quality (LQ) face images via unsupervised contrastive learning with reconstruction loss, and demonstrate that this capability significantly improves performance, particularly in terms of the naturalness of the restored images. Our novel restoration scheme, named DR-BFR, guides the denoising of Latent Diffusion Models (LDM) by incorporating Degradation Representation (DR) and content features from LQ images. DR-BFR comprises two modules: 1) Degradation Representation Module (DRM): This module extracts degradation representation with content-irrelevant features from LQ faces and estimates a reasonable distribution in the degradation space through contrastive learning and a specially designed LQ reconstruction. 2) Latent Diffusion Restoration Module (LDRM): This module perceives both degradation features and content features in the latent space, enabling the restoration of high-quality images from LQ inputs. Our experiments demonstrate that the proposed DR-BFR significantly outperforms state-of-the-art methods quantitatively and qualitatively across various datasets. The DR effectively distinguishes between various degradations in blind face inverse problems and provides a reasonably powerful prompt to LDM.
Abstract:Developing blind video deflickering (BVD) algorithms to enhance video temporal consistency, is gaining importance amid the flourish of image processing and video generation. However, the intricate nature of video data complicates the training of deep learning methods, leading to high resource consumption and instability, notably under severe lighting flicker. This underscores the critical need for a compact representation beyond pixel values to advance BVD research and applications. Inspired by the classic scale-time equalization (STE), our work introduces the histogram-assisted solution, called BlazeBVD, for high-fidelity and rapid BVD. Compared with STE, which directly corrects pixel values by temporally smoothing color histograms, BlazeBVD leverages smoothed illumination histograms within STE filtering to ease the challenge of learning temporal data using neural networks. In technique, BlazeBVD begins by condensing pixel values into illumination histograms that precisely capture flickering and local exposure variations. These histograms are then smoothed to produce singular frames set, filtered illumination maps, and exposure maps. Resorting to these deflickering priors, BlazeBVD utilizes a 2D network to restore faithful and consistent texture impacted by lighting changes or localized exposure issues. BlazeBVD also incorporates a lightweight 3D network to amend slight temporal inconsistencies, avoiding the resource consumption issue. Comprehensive experiments on synthetic, real-world and generated videos, showcase the superior qualitative and quantitative results of BlazeBVD, achieving inference speeds up to 10x faster than state-of-the-arts.
Abstract:Blind face restoration (BFR) is important while challenging. Prior works prefer to exploit GAN-based frameworks to tackle this task due to the balance of quality and efficiency. However, these methods suffer from poor stability and adaptability to long-tail distribution, failing to simultaneously retain source identity and restore detail. We propose DiffBFR to introduce Diffusion Probabilistic Model (DPM) for BFR to tackle the above problem, given its superiority over GAN in aspects of avoiding training collapse and generating long-tail distribution. DiffBFR utilizes a two-step design, that first restores identity information from low-quality images and then enhances texture details according to the distribution of real faces. This design is implemented with two key components: 1) Identity Restoration Module (IRM) for preserving the face details in results. Instead of denoising from pure Gaussian random distribution with LQ images as the condition during the reverse process, we propose a novel truncated sampling method which starts from LQ images with part noise added. We theoretically prove that this change shrinks the evidence lower bound of DPM and then restores more original details. With theoretical proof, two cascade conditional DPMs with different input sizes are introduced to strengthen this sampling effect and reduce training difficulty in the high-resolution image generated directly. 2) Texture Enhancement Module (TEM) for polishing the texture of the image. Here an unconditional DPM, a LQ-free model, is introduced to further force the restorations to appear realistic. We theoretically proved that this unconditional DPM trained on pure HQ images contributes to justifying the correct distribution of inference images output from IRM in pixel-level space. Truncated sampling with fractional time step is utilized to polish pixel-level textures while preserving identity information.