Abstract:Aerial Manipulator Systems (AMS) have garnered significant interest for their utility in aerial operations. Nonetheless, challenges related to the manipulator's limited stiffness and the coupling disturbance with manipulator movement persist. This paper introduces the Aerial Tendon-Driven Manipulator (ATDM), an innovative AMS that integrates a hexrotor Unmanned Aerial Vehicle (UAV) with a 4-degree-of-freedom (4-DOF) anthropomorphic tendon-driven manipulator. The design of the manipulator is anatomically inspired, emulating the human arm anatomy from the shoulder joint downward. To enhance the structural integrity and performance, finite element topology optimization and lattice optimization are employed on the links to replicate the radially graded structure characteristic of bone, this approach effectively reduces weight and inertia while simultaneously maximizing stiffness. A novel tensioning mechanism with adjustable tension is introduced to address cable relaxation, and a Tension-amplification tendon mechanism is implemented to increase the manipulator's overall stiffness and output. The paper presents a kinematic model based on virtual coupled joints, a comprehensive workspace analysis, and detailed calculations of output torques and stiffness for individual arm joints. The prototype arm has a total weight of 2.7 kg, with the end effector contributing only 0.818 kg. By positioning all actuators at the base, coupling disturbance are minimized. The paper includes a detailed mechanical design and validates the system's performance through semi-physical multi-body dynamics simulations, confirming the efficacy of the proposed design.
Abstract:In a multitude of industrial fields, a key objective entails optimising resource management whilst satisfying user requirements. Resource management by industrial practitioners can result in a passive transfer of user loads across resource providers, a phenomenon whose accurate characterisation is both challenging and crucial. This research reveals the existence of user clusters, which capture macro-level user transfer patterns amid resource variation. We then propose CLUSTER, an interpretable hierarchical Bayesian nonparametric model capable of automating cluster identification, and thereby predicting user transfer in response to resource variation. Furthermore, CLUSTER facilitates uncertainty quantification for further reliable decision-making. Our method enables privacy protection by functioning independently of personally identifiable information. Experiments with simulated and real-world data from the communications industry reveal a pronounced alignment between prediction results and empirical observations across a spectrum of resource management scenarios. This research establishes a solid groundwork for advancing resource management strategy development.
Abstract:Vision transformers (ViTs) encoding an image as a sequence of patches bring new paradigms for semantic segmentation.We present an efficient framework of representation separation in local-patch level and global-region level for semantic segmentation with ViTs. It is targeted for the peculiar over-smoothness of ViTs in semantic segmentation, and therefore differs from current popular paradigms of context modeling and most existing related methods reinforcing the advantage of attention. We first deliver the decoupled two-pathway network in which another pathway enhances and passes down local-patch discrepancy complementary to global representations of transformers. We then propose the spatially adaptive separation module to obtain more separate deep representations and the discriminative cross-attention which yields more discriminative region representations through novel auxiliary supervisions. The proposed methods achieve some impressive results: 1) incorporated with large-scale plain ViTs, our methods achieve new state-of-the-art performances on five widely used benchmarks; 2) using masked pre-trained plain ViTs, we achieve 68.9% mIoU on Pascal Context, setting a new record; 3) pyramid ViTs integrated with the decoupled two-pathway network even surpass the well-designed high-resolution ViTs on Cityscapes; 4) the improved representations by our framework have favorable transferability in images with natural corruptions. The codes will be released publicly.