Abstract:Moire patterns arise when two similar repetitive patterns interfere, a phenomenon frequently observed during the capture of images or videos on screens. The color, shape, and location of moire patterns may differ across video frames, posing a challenge in learning information from adjacent frames and preserving temporal consistency. Previous video demoireing methods heavily rely on well-designed alignment modules, resulting in substantial computational burdens. Recently, Mamba, an improved version of the State Space Model (SSM), has demonstrated significant potential for modeling long-range dependencies with linear complexity, enabling efficient temporal modeling in video demoireing without requiring a specific alignment module. In this paper, we propose a novel alignment-free Raw video demoireing network with frequency-assisted spatio-temporal Mamba (DemMamba). The Spatial Mamba Block (SMB) and Temporal Mamba Block (TMB) are sequentially arranged to facilitate effective intra- and inter-relationship modeling in Raw videos with moire patterns. Within SMB, an Adaptive Frequency Block (AFB) is introduced to aid demoireing in the frequency domain. For TMB, a Channel Attention Block (CAB) is embedded to further enhance temporal information interactions by exploiting the inter-channel relationships among features. Extensive experiments demonstrate that our proposed DemMamba surpasses state-of-the-art approaches by 1.3 dB and delivers a superior visual experience.
Abstract:Under-Display Camera (UDC) has been widely exploited to help smartphones realize full screen display. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC system usually contain flare, haze, blur, and noise. Particularly, flare and blur in UDC images could severely deteriorate the user experience in high dynamic range (HDR) scenes. In this paper, we propose a new deep model, namely UDC-UNet, to address the UDC image restoration problem with the known Point Spread Function (PSF) in HDR scenes. On the premise that Point Spread Function (PSF) of the UDC system is known, we treat UDC image restoration as a non-blind image restoration problem and propose a novel learning-based approach. Our network consists of three parts, including a U-shape base network to utilize multi-scale information, a condition branch to perform spatially variant modulation, and a kernel branch to provide the prior knowledge of the given PSF. According to the characteristics of HDR data, we additionally design a tone mapping loss to stabilize network optimization and achieve better visual quality. Experimental results show that the proposed UDC-UNet outperforms the state-of-the-art methods in quantitative and qualitative comparisons. Our approach won the second place in the UDC image restoration track of MIPI challenge. Codes will be publicly available.
Abstract:Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a different behaviour as high-level tasks and is sensitive to the dropout operation. However, in this paper, we show that appropriate usage of dropout benefits SR networks and improves the generalization ability. Specifically, dropout is better embedded at the end of the network and is significantly helpful for the multi-degradation settings. This discovery breaks our common sense and inspires us to explore its working mechanism. We further use two analysis tools -- one is from recent network interpretation works, and the other is specially designed for this task. The analysis results provide side proofs to our experimental findings and show us a new perspective to understand SR networks.