Abstract:Generating ``bullet-time'' effects of human free-viewpoint videos is critical for immersive visual effects and VR/AR experience. Recent neural advances still lack the controllable and interactive bullet-time design ability for human free-viewpoint rendering, especially under the real-time, dynamic and general setting for our trajectory-aware task. To fill this gap, in this paper we propose a neural interactive bullet-time generator (iButter) for photo-realistic human free-viewpoint rendering from dense RGB streams, which enables flexible and interactive design for human bullet-time visual effects. Our iButter approach consists of a real-time preview and design stage as well as a trajectory-aware refinement stage. During preview, we propose an interactive bullet-time design approach by extending the NeRF rendering to a real-time and dynamic setting and getting rid of the tedious per-scene training. To this end, our bullet-time design stage utilizes a hybrid training set, light-weight network design and an efficient silhouette-based sampling strategy. During refinement, we introduce an efficient trajectory-aware scheme within 20 minutes, which jointly encodes the spatial, temporal consistency and semantic cues along the designed trajectory, achieving photo-realistic bullet-time viewing experience of human activities. Extensive experiments demonstrate the effectiveness of our approach for convenient interactive bullet-time design and photo-realistic human free-viewpoint video generation.
Abstract:4D reconstruction and rendering of human activities is critical for immersive VR/AR experience.Recent advances still fail to recover fine geometry and texture results with the level of detail present in the input images from sparse multi-view RGB cameras. In this paper, we propose NeuralHumanFVV, a real-time neural human performance capture and rendering system to generate both high-quality geometry and photo-realistic texture of human activities in arbitrary novel views. We propose a neural geometry generation scheme with a hierarchical sampling strategy for real-time implicit geometry inference, as well as a novel neural blending scheme to generate high resolution (e.g., 1k) and photo-realistic texture results in the novel views. Furthermore, we adopt neural normal blending to enhance geometry details and formulate our neural geometry and texture rendering into a multi-task learning framework. Extensive experiments demonstrate the effectiveness of our approach to achieve high-quality geometry and photo-realistic free view-point reconstruction for challenging human performances.