Abstract:Quantifying image complexity at the entity level is straightforward, but the assessment of semantic complexity has been largely overlooked. In fact, there are differences in semantic complexity across images. Images with richer semantics can tell vivid and engaging stories and offer a wide range of application scenarios. For example, the Cookie Theft picture is such a kind of image and is widely used to assess human language and cognitive abilities due to its higher semantic complexity. Additionally, semantically rich images can benefit the development of vision models, as images with limited semantics are becoming less challenging for them. However, such images are scarce, highlighting the need for a greater number of them. For instance, there is a need for more images like Cookie Theft to cater to people from different cultural backgrounds and eras. Assessing semantic complexity requires human experts and empirical evidence. Automatic evaluation of how semantically rich an image will be the first step of mining or generating more images with rich semantics, and benefit human cognitive assessment, Artificial Intelligence, and various other applications. In response, we propose the Image Semantic Assessment (ISA) task to address this problem. We introduce the first ISA dataset and a novel method that leverages language to solve this vision problem. Experiments on our dataset demonstrate the effectiveness of our approach. Our data and code are available at: https://github.com/xiujiesong/ISA.
Abstract:Federated Learning (FL) exhibits privacy vulnerabilities under gradient inversion attacks (GIAs), which can extract private information from individual gradients. To enhance privacy, FL incorporates Secure Aggregation (SA) to prevent the server from obtaining individual gradients, thus effectively resisting GIAs. In this paper, we propose a stealthy label inference attack to bypass SA and recover individual clients' private labels. Specifically, we conduct a theoretical analysis of label inference from the aggregated gradients that are exclusively obtained after implementing SA. The analysis results reveal that the inputs (embeddings) and outputs (logits) of the final fully connected layer (FCL) contribute to gradient disaggregation and label restoration. To preset the embeddings and logits of FCL, we craft a fishing model by solely modifying the parameters of a single batch normalization (BN) layer in the original model. Distributing client-specific fishing models, the server can derive the individual gradients regarding the bias of FCL by resolving a linear system with expected embeddings and the aggregated gradients as coefficients. Then the labels of each client can be precisely computed based on preset logits and gradients of FCL's bias. Extensive experiments show that our attack achieves large-scale label recovery with 100\% accuracy on various datasets and model architectures.