Abstract:Deep learning-based brain tumor segmentation (BTS) models for multi-modal MRI images have seen significant advancements in recent years. However, a common problem in practice is the unavailability of some modalities due to varying scanning protocols and patient conditions, making segmentation from incomplete MRI modalities a challenging issue. Previous methods have attempted to address this by fusing accessible multi-modal features, leveraging attention mechanisms, and synthesizing missing modalities using generative models. However, these methods ignore the intrinsic problems of medical image segmentation, such as the limited availability of training samples, particularly for cases with tumors. Furthermore, these methods require training and deploying a specific model for each subset of missing modalities. To address these issues, we propose a novel approach that enhances the BTS model from two perspectives. Firstly, we introduce a pre-training stage that generates a diverse pre-training dataset covering a wide range of different combinations of tumor shapes and brain anatomy. Secondly, we propose a post-training stage that enables the model to reconstruct missing modalities in the prediction results when only partial modalities are available. To achieve the pre-training stage, we conceptually decouple the MRI image into two parts: `anatomy' and `tumor'. We pre-train the BTS model using synthesized data generated from the anatomy and tumor parts across different training samples. ... Extensive experiments demonstrate that our proposed method significantly improves the performance over the baseline and achieves new state-of-the-art results on three brain tumor segmentation datasets: BRATS2020, BRATS2018, and BRATS2015.
Abstract:Multimodal Named Entity Recognition (MNER) is a crucial task for information extraction from social media platforms such as Twitter. Most current methods rely on attention weights to extract information from both text and images but are often unreliable and lack interpretability. To address this problem, we propose incorporating uncertainty estimation into the MNER task, producing trustworthy predictions. Our proposed algorithm models the distribution of each modality as a Normal-inverse Gamma distribution, and fuses them into a unified distribution with an evidential fusion mechanism, enabling hierarchical characterization of uncertainties and promotion of prediction accuracy and trustworthiness. Additionally, we explore the potential of pre-trained large foundation models in MNER and propose an efficient fusion approach that leverages their robust feature representations. Experiments on two datasets demonstrate that our proposed method outperforms the baselines and achieves new state-of-the-art performance.