Abstract:Existing image inpainting methods have achieved remarkable accomplishments in generating visually appealing results, often accompanied by a trend toward creating more intricate structural textures. However, while these models excel at creating more realistic image content, they often leave noticeable traces of tampering, posing a significant threat to security. In this work, we take the anti-forensic capabilities into consideration, firstly proposing an end-to-end training framework for anti-forensic image inpainting named SafePaint. Specifically, we innovatively formulated image inpainting as two major tasks: semantically plausible content completion and region-wise optimization. The former is similar to current inpainting methods that aim to restore the missing regions of corrupted images. The latter, through domain adaptation, endeavors to reconcile the discrepancies between the inpainted region and the unaltered area to achieve anti-forensic goals. Through comprehensive theoretical analysis, we validate the effectiveness of domain adaptation for anti-forensic performance. Furthermore, we meticulously crafted a region-wise separated attention (RWSA) module, which not only aligns with our objective of anti-forensics but also enhances the performance of the model. Extensive qualitative and quantitative evaluations show our approach achieves comparable results to existing image inpainting methods while offering anti-forensic capabilities not available in other methods.
Abstract:The misuse of deepfake technology by malicious actors poses a potential threat to nations, societies, and individuals. However, existing methods for detecting deepfakes primarily focus on uncompressed videos, such as noise characteristics, local textures, or frequency statistics. When applied to compressed videos, these methods experience a decrease in detection performance and are less suitable for real-world scenarios. In this paper, we propose a deepfake video detection method based on 3D spatiotemporal trajectories. Specifically, we utilize a robust 3D model to construct spatiotemporal motion features, integrating feature details from both 2D and 3D frames to mitigate the influence of large head rotation angles or insufficient lighting within frames. Furthermore, we separate facial expressions from head movements and design a sequential analysis method based on phase space motion trajectories to explore the feature differences between genuine and fake faces in deepfake videos. We conduct extensive experiments to validate the performance of our proposed method on several compressed deepfake benchmarks. The robustness of the well-designed features is verified by calculating the consistent distribution of facial landmarks before and after video compression.Our method yields satisfactory results and showcases its potential for practical applications.
Abstract:AI-generated content has accelerated the topic of media synthesis, particularly Deepfake, which can manipulate our portraits for positive or malicious purposes. Before releasing these threatening face images, one promising forensics solution is the injection of robust watermarks to track their own provenance. However, we argue that current watermarking models, originally devised for genuine images, may harm the deployed Deepfake detectors when directly applied to forged images, since the watermarks are prone to overlap with the forgery signals used for detection. To bridge this gap, we thus propose AdvMark, on behalf of proactive forensics, to exploit the adversarial vulnerability of passive detectors for good. Specifically, AdvMark serves as a plug-and-play procedure for fine-tuning any robust watermarking into adversarial watermarking, to enhance the forensic detectability of watermarked images; meanwhile, the watermarks can still be extracted for provenance tracking. Extensive experiments demonstrate the effectiveness of the proposed AdvMark, leveraging robust watermarking to fool Deepfake detectors, which can help improve the accuracy of downstream Deepfake detection without tuning the in-the-wild detectors. We believe this work will shed some light on the harmless proactive forensics against Deepfake.
Abstract:Malicious Deepfakes have led to a sharp conflict over distinguishing between genuine and forged faces. Although many countermeasures have been developed to detect Deepfakes ex-post, undoubtedly, passive forensics has not considered any preventive measures for the pristine face before foreseeable manipulations. To complete this forensics ecosystem, we thus put forward the proactive solution dubbed SepMark, which provides a unified framework for source tracing and Deepfake detection. SepMark originates from encoder-decoder-based deep watermarking but with two separable decoders. For the first time the deep separable watermarking, SepMark brings a new paradigm to the established study of deep watermarking, where a single encoder embeds one watermark elegantly, while two decoders can extract the watermark separately at different levels of robustness. The robust decoder termed Tracer that resists various distortions may have an overly high level of robustness, allowing the watermark to survive both before and after Deepfake. The semi-robust one termed Detector is selectively sensitive to malicious distortions, making the watermark disappear after Deepfake. Only SepMark comprising of Tracer and Detector can reliably trace the trusted source of the marked face and detect whether it has been altered since being marked; neither of the two alone can achieve this. Extensive experiments demonstrate the effectiveness of the proposed SepMark on typical Deepfakes, including face swapping, expression reenactment, and attribute editing.