Abstract:We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free Variational Autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and L\'evy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces.
Abstract:Given an unsupervised outlier detection task, how should one select a detection algorithm as well as its hyperparameters (jointly called a model)? Unsupervised model selection is notoriously difficult, in the absence of hold-out validation data with ground-truth labels. Therefore, the problem is vastly understudied. In this work, we study the feasibility of employing internal model evaluation strategies for selecting a model for outlier detection. These so-called internal strategies solely rely on the input data (without labels) and the output (outlier scores) of the candidate models. We setup (and open-source) a large testbed with 39 detection tasks and 297 candidate models comprised of 8 detectors and various hyperparameter configurations. We evaluate 7 different strategies on their ability to discriminate between models w.r.t. detection performance, without using any labels. Our study reveals room for progress -- we find that none would be practically useful, as they select models only comparable to a state-of-the-art detector (with random configuration).