Abstract:Knowledge tracing aims to model students' past answer sequences to track the change in their knowledge acquisition during exercise activities and to predict their future learning performance. Most existing approaches ignore the fact that students' abilities are constantly changing or vary between individuals, and lack the interpretability of model predictions. To this end, in this paper, we propose a novel model based on ability attributes and attention mechanism. We first segment the interaction sequences and captures students' ability attributes, then dynamically assign students to groups with similar abilities, and quantify the relevance of the exercises to the skill by calculating the attention weights between the exercises and the skill to enhance the interpretability of the model. We conducted extensive experiments and evaluate real online education datasets. The results confirm that the proposed model is better at predicting performance than five well-known representative knowledge tracing models, and the model prediction results are explained through an inference path.
Abstract:Domain name system (DNS) is a crucial part of the Internet, yet has been widely exploited by cyber attackers. Apart from making static methods like blacklists or sinkholes infeasible, some weasel attackers can even bypass detection systems with machine learning based classifiers. As a solution to this problem, we propose a robust domain detection system named HinDom. Instead of relying on manually selected features, HinDom models the DNS scene as a Heterogeneous Information Network (HIN) consist of clients, domains, IP addresses and their diverse relationships. Besides, the metapath-based transductive classification method enables HinDom to detect malicious domains with only a small fraction of labeled samples. So far as we know, this is the first work to apply HIN in DNS analysis. We build a prototype of HinDom and evaluate it in CERNET2 and TUNET. The results reveal that HinDom is accurate, robust and can identify previously unknown malicious domains.